
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and 
Dissertations 

2019 

Intense terahertz light-quantum quench and control of Intense terahertz light-quantum quench and control of 

superconductivity superconductivity 

Xu Yang 
Iowa State University 

Follow this and additional works at: https://lib.dr.iastate.edu/etd 

 Part of the Condensed Matter Physics Commons 

Recommended Citation Recommended Citation 
Yang, Xu, "Intense terahertz light-quantum quench and control of superconductivity" (2019). Graduate 
Theses and Dissertations. 17618. 
https://lib.dr.iastate.edu/etd/17618 

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and 
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and 
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please 
contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=lib.dr.iastate.edu%2Fetd%2F17618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17618?utm_source=lib.dr.iastate.edu%2Fetd%2F17618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Intense terahertz light-quantum quench and control of superconductivity 

 

by 

 

Xu Yang 

 

 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Major: Condensed Matter Physics 

 

Program of Study Committee: 

Jigang Wang, Major Professor 

Peter Orth 

Rebecca Flint 

Kirill Tuchin  

Patricia Thiel 

 

 

 

The student author, whose presentation of the scholarship herein was approved by the program 

of study committee, is solely responsible for the content of this dissertation. The Graduate 

College will ensure this dissertation is globally accessible and will not permit alterations after a 

degree is conferred.  

 

 

 

 

 

 

Iowa State University 

Ames, Iowa 

2019 

 

Copyright © Cy Cardinal, 2019. All rights reserved. 



www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents, Haiyan Zhang and Zeqing Yang for their

support during my PhD study.



www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Principle of Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Einstein AB Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Population Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Cavity Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Generation of Ultrashort Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Propagation of Ultrashort Pulse . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Mode-Lock and Gain Broadening . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Ti-sapphire Oscillator-Amplifier System . . . . . . . . . . . . . . . . . . . . . 13

2.3 Terahertz generation and detection technique . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Introduction to THz radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 THz Generation by Optical Rectification . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Free-Space Electro-Optic Sampling . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Generation of Intense THz Wave . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Ultrafast Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 History of Ultrafast Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Ultrafast Pump-Probe Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 THz pump-THz probe spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Complex conductivity extraction: . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Introduction to superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 London equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.3 BCS theory of superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Electrodynamics of superconducting state . . . . . . . . . . . . . . . . . . . . 32
2.6.5 Introduction to Anderson pseudo spin formalism . . . . . . . . . . . . . . . . 34



www.manaraa.com

iv

CHAPTER 3. TERAHERTZ LIGHT-QUANTUM-TUNING OF A METASTABLE COR-
RELATED PHASE HIDDEN BY SUPERCONDUCTIVITY . . . . . . . . . . . . . . . . 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Static Terahertz Electrodynamics of Superconductor Nb3Sn . . . . . . . . . . . . . . 38
3.4 Terahertz Induced Hidden Phase in Pump-probe Measurement . . . . . . . . . . . . 38
3.5 Theoretical Simulation of Hidden Phase . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 4. TERAHERTZ ELECTRODYNAMICS OF COEXISTING ORDERS AND
ULTRAFAST QUANTUM ENERGY TRANSFER IN Nb3Sn SUPERCONDUCTOR . . 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Method: Optical Pump-THz Probe Ultrafast Spectroscopy . . . . . . . . . . . . . . . 50
4.3 Terahertz Electrodynamics of Superconductivity . . . . . . . . . . . . . . . . . . . . 51
4.4 Quantum-limit Energy Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CHAPTER 5. NON-EQUILIBRIUM PAIR BREAKING IN Ba(Fe1−xCox)2As2 SUPER-
CONDUCTORS: EVIDENCE FOR FORMATION OF PHOTO-INDUCED EXCITONIC
STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Sample Preparation and Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Non-equilibrium Dynamics of Pair Breaking . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Theory Explanation: Formation of Photo-induced Excitonic State . . . . . . . . . . 67

CHAPTER 6. LIGHTWAVE-DRIVEN GAPLESS SUPERCONDUCTIVITY AND FOR-
BIDDEN QUANTUM BEATS BY TERAHERTZ SYMMETRY BREAKING . . . . . . . 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 7. FUTURE PLANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

APPENDIX A. ADDITIONAL MATERIALS: CHAPTER 3 . . . . . . . . . . . . . . . . . . 104
A.1 Two-time THz pump and THz probe spectroscopy of complex conductivity . . . . . 104
A.2 Thermodynamic properties and more characterizations of our sample . . . . . . . . . 105
A.3 Effective medium theory calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.4 Frequency-dependent electric transport . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.5 Theoretical model of gapless conducting state . . . . . . . . . . . . . . . . . . . . . . 110
A.6 Discussion on conductivity divergent behavior above threshold pumping field of

prethermalization state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

APPENDIX B. ADDITIONAL MATERIALS: CHAPTER 4 . . . . . . . . . . . . . . . . . . 117
B.1 Mattis-Bardeen Theorem Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.2 THz Probing of Martensitic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3 Determination of Laser Energy Absorption . . . . . . . . . . . . . . . . . . . . . . . 120
B.4 Determination of Laser Energy Absorption . . . . . . . . . . . . . . . . . . . . . . . 121



www.manaraa.com

v

B.5 Rothwarf-Taylor Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.5.1 Step.1: Fitting of the pump-probe dynamics. . . . . . . . . . . . . . . . . . . 123
B.5.2 Step.2: Fitting of τ

β and K vs. fluence. . . . . . . . . . . . . . . . . . . . . . . 124
B.5.3 Further discussion on the fitting parameters . . . . . . . . . . . . . . . . . . . 125
B.5.4 Energy absorption influence on the fitting results . . . . . . . . . . . . . . . . 126

B.6 ”One Photon-One Cooper Pair” Quantum Limit Energy Transfer . . . . . . . . . . . 127

APPENDIX C. ADDITIONAL MATERIALS: CHAPTER 5 . . . . . . . . . . . . . . . . . . 130
C.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.2 THz Response Simulation of Superconductivity by Mattis-Bardeen Theory . . . . . . 131
C.3 Optical conductivity extraction from THz reflection measurement . . . . . . . . . . . 133
C.4 Comparison of SC Quench Dynamics Between Thin Film and Single–Crystal Samples134
C.5 Many-body Theory of Excitonic SDW Correlation Formation . . . . . . . . . . . . . 136
C.6 Build–up of Excitonic Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

APPENDIX D. ADDITIONAL MATERIALS: CHAPTER 6 . . . . . . . . . . . . . . . . . . 148
D.1 Equilibrium THz electrodynamics in Nb3Sn . . . . . . . . . . . . . . . . . . . . . . . 148
D.2 A classical circuit model analysis of the THz pump-induced supercurrent . . . . . . . 149
D.3 A quasi-equilibrium picture of the gapless superconducting state (Fig. 6.1b, main

text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.4 Third harmonic generation (THG) in Nb3Sn . . . . . . . . . . . . . . . . . . . . . . . 153
D.5 Single-pulse emission vs. THz pump-probe . . . . . . . . . . . . . . . . . . . . . . . . 154
D.6 Effective asymmetric multi-cycle THz pump pulses . . . . . . . . . . . . . . . . . . . 156
D.7 Multi-cycle vs. single-cycle pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
D.8 Gauge-invariant nonequilibrium SC theory . . . . . . . . . . . . . . . . . . . . . . . . 159
D.9 Interference between quantum transport and pseudo-spin precession . . . . . . . . . 163



www.manaraa.com

vi

LIST OF TABLES

Page
Table B.1 Laser power transmission measurement results. . . . . . . . . . . . . . . . . 120
Table B.2 Laser power transmission measurement results. . . . . . . . . . . . . . . . . 121
Table B.3 Comparison of Optical Pump-THz Probe Experiment on NbN , MgB2 and

Nb3Sn Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table B.4 Comparison of the key parameters among NbN , MgB2 and Nb3Sn Super-

conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table D.1 Material properties of Nb3Sn. . . . . . . . . . . . . . . . . . . . . . . . . . . 151



www.manaraa.com

vii

LIST OF FIGURES

Page
Figure 2.1 A simple design of Laser consists of cavity mirrors, gain medium and external

pumping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.2 Einstein AB coefficient for two-level system. . . . . . . . . . . . . . . . . . . 4
Figure 2.3 Population inversion in three-level system. . . . . . . . . . . . . . . . . . . . 5
Figure 2.4 Four-level system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.5 Grating pair to change group dispersion. . . . . . . . . . . . . . . . . . . . . 10
Figure 2.6 Comparison between optical modes with random phases and fixed phase

(mode-lock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2.7 Homogeneous and inhomogeneous gain broadening effect. . . . . . . . . . . . 12
Figure 2.8 Inhomogeneous saturation and hole burning effect. . . . . . . . . . . . . . . 12
Figure 2.9 Homogeneous saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.10 (A): Absorption and emission spectra of Ti:sapphire. (B): Energy level

structure of Ti3+ in sapphire. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.11 Configuration of Tsunami Oscillator. . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.12 Configuration of Spitfire laser amplifier. . . . . . . . . . . . . . . . . . . . . 15
Figure 2.13 Available spectrum from non-linear process by ultrafast laser. . . . . . . . . 15
Figure 2.14 THz and adjacent electromagnetic radiation . . . . . . . . . . . . . . . . . . 16
Figure 2.15 THz control of materials. Resonant control: (A) Lattice vibration of SrTiO3,

(B) spin precession in SmFeO3, (C) Cooper pairs in superconductor; Non-
resonant control: (D) Insulator-metal phase transition in VO2, (E) Impact
ionization in narrow bandgap semiconductor. . . . . . . . . . . . . . . . . . 17

Figure 2.16 (A) ZnTe crystal structure; (B) Laser polarization in 110 plan; (C) (D)
amplitude and polarization of THz E field. α is THz polarization in the
coordination of (B) with respect to [001]. . . . . . . . . . . . . . . . . . . . . 18

Figure 2.17 (A) Polarization of incident THz and optical light; (B) Optics to read out
polarization state change of sampling beam. . . . . . . . . . . . . . . . . . . 19

Figure 2.18 (A) Sonic boom; (B) Blue light radiation by electron Charenkov radiation
in nuclear plan; (C) THz generation by tilted phase front in MgO doped
LiNbO3 crystal; Cherenkov radiation of a particle in (D) and plan wave in
(E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.19 (A): Bar bet: Galloping horse ever lifts all four feet completely off the ground
during the gait? (1878) 1/2000s per frame. (B): How to Make Applesauce
at MIT (1964) 1/1 million s per frame. (C): Ultrashort laser pulse shot
through bottle of water (2013) 1/1 trillion s per frame. . . . . . . . . . . . 22

Figure 2.20 Time scale of everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2.21 Schematic for ultrafast pump-probe measurement. . . . . . . . . . . . . . . . 24
Figure 2.22 Experimental setup of THz pump-THz probe spectroscopy. BS: beam split-

ter; HWP: half wave plate; AL: achromatic lens; LN: MgO doped LiNbO3;
WGP: wire grid polarizer; QWP: quarter wave plate; WP: Wollaston prism 25



www.manaraa.com

viii

Figure 2.23 Experimental setup of THz pump-THz probe spectroscopy. Temporal pulse
sequence of static THz transmission measurement. . . . . . . . . . . . . . . 26

Figure 2.24 Temporal pulse sequence of pump induced probe transmitted THz E field
change measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.25 Magnetization of Type I and II superconductor vs applied magnetic field (11). 30
Figure 3.1 (a) Schematic of out-of-equilibrium quantum tuning scheme, via non-thermal

quenching of the SC order |ψSC〉, for discovery of a hidden phase marked
as |ψB−phase〉. (b) A typical, single–cycle THz quench electric field in time
domain. (c): Quench field spectrum (shaded black) with central frequency
well within the 2∆SC gap shown by σ1(ω) (gray diamond) at 4.1K. σ1(ω) at
zero frequency is marked by red arrow and is proportional to superfluid den-
sity ns. The complex conductivity is shown as (d) σ2(ω), (e) σ1(ω). Insets:
(d) ns and (e) 2D false color plot of static transmission spectrum overlaid
by extracted ∆SC gap at different temperatures. (f) A 2D false color plot
of THz pump–induced change, under peak pump field ETHz =120kV/cm,
in THz probe E–field, ∆E(tgate,∆tpp). The normalized temporal profile of
∆E/E0, measured at tgate = −0.08ps (inset, red line), closely follows the
dynamic superfluid density change ∆ns/ns. . . . . . . . . . . . . . . . . . . 44

Figure 3.2 The distinct spectral features of the gapless quantum state differ from both
normal metallic states and thermal behaviors. (a) Nonlinear pump-field
dependence of peak-peak probe E-field transmission change −∆E/E0 for
fields up to 620kV/cm. (b) THz response functions, expressed as σ1 and σ2,
of the post-quench states (solid circles) at various pump E fields marked in
(a), corresponding to partial (E#1−#3) and full (E#4−#6)) SC order quench.
Shown together are the equilibrium responses σ1 at various temperatures
from 6K to 18K (gray diamond) that give nearly identical σ2 to the non-
equilibrium state, except the onset of a sharp upturn at very low frequencies,
marked by arrows, consistent with the diverging-like σ1 by the Kramers-
Kronig relation. (c): The post quench state conductivities at initial T=18K
above Tc for E#6 pumping (red line) and at T=4.1K below Tc but for optical
pumping at 1.55 eV (black line). (d): Frequency-dependent scattering rate
1/τ(ω) for the post-quench states pumped by E#2 and E#5 compared to
the normal state result that converges to 1/τimp (gray circle). (e): 1/τ(ω)
for the equilibrium SC (4.1K) and normal (18K) states as marked. . . . . . 45



www.manaraa.com

ix

Figure 3.3 The persisting, prethermalized plateau state with non-thermal characteris-
tics and long-lived memory. (a) Temporal dynamics of −∆E/E0 at different
quench field ETHz shows a clear transition between two different decay pro-
files, marked as τ fast and τ slow at the threshold field Eth. Inset: THz
response σ2 as a function of time delay, with representative traces for time
delays ∆tpp= -10ps, 12ps, 500ps, 1ns at ETHz =120kV/cm at 4.1K. (b):An
illustration of the characteristic timescales extracted from the data in (a)-
(d) which range from SC order parameter coherence (green), QP decay
(black) and thermalization (blue) to post-quench prethermalization above
the threshold (red). (c): σ2 of the post-quench state for various time delays
∆tpp= -10ps, 12ps, 500ps, 1ns at ETHz=620kV/cm at 4.1K. Inset: −∆E/E0

dynamics. (d): The same spectral-temporal characteristics as (b) but for
the normal state at 18K. (e): A comparison of 1/τ(ω) corresponding to (b)
and (c) at the given time delays. Shown together is the final SC state after
relaxation (gray square). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.4 Predictions of theoretical model for the hidden gapless quantum state with
extraordinary conductivity. (a–f) Simulation of the conductivity (a-c) and
Fermi surface (d-f) with the reduced gap ∆W as discussed in the main text.
A and D: ∆W /∆W,0=1; B and E: 0.9; C and F: 0.8. Red and black dash
lines illustrate the e and h pockets. Blue shaded areas highlight the regions
of gapless excitations. (g–i) Free–energy density for the model Hamiltonian
(supplementary) as function of the CDW-like order parameter ∆W. (g)
∆SC = ∆SC,4K for equilibrium state below Tc; (h) ∆SC,18K = 0 describes
the thermal normal state showing an increase in the equilibrium ∆W (red
dash line); (i) ∆SC = 0 while T (t) < Tc describes a pre-thermalized gapless
state following THz quench of the SC gap with minimal heating that cannot
be realized in equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.1 THz probe transmitted field Eprobe as function of gate delay time tgate for the
thermal equilibrium state from 4K to 20K. (b), (c) Temperature dependence
of imaginary and real parts of the conductivity, σ1(ω) and σ2(ω). Inset to
(b): schematic of Cooper pair breaking. (d) Mass renormalization m∗/m
and (e) momentum scattering rate 1/τ spectra calculated from σ1(ω) and
σ2(ω) in (a), (b). Grey solid line denotes 2∆SC gap at 4.1K. Dashed lines
mark the asymptotic m∗/m and 1/τ towards zero frequency. . . . . . . . . . 57

Figure 4.2 (a) Transmitted Eprobe through unpumped Nb3Sn film (gray) and pump
induced change ∆Eprobe (red). (b) Temperature dependence of peak-to-
peak ∆Eprobe at 4.02µJ/cm2. ∆Eprobe above Tc is magnified in inset to (b)
and critical temperature TM is marked by blue dashed line. (c) σ1(ω) after
1.55eV (black), 4meV (red) pump photo-excitation compared to equilibrium
(gray circle) at 18K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.3 (a), (b) Non-equilibrium σ1(ω) and σ2(ω) at pump-probe delay tpp=10ps
for optical-pump fluences 0.05-16µJ/cm2. Inset to (b) shows effective tem-
perature T∗ at various fluences. (c), (d) Fluence dependence of superfluid
density ns and SC gap ∆SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



www.manaraa.com

x

Figure 4.4 (a) Pump-probe dynamics measured in experiment (dots) and fitted by RT
model (black line). (b), (c) Fluence dependence of RT model parameters K
and ξ/η (black triangle) and fitting curve (red line). (d) Fitting MSE vs.
QP energy absorption percentage p. Inset to (c) shows fluence dependence
of pump induced ∆E fitted by a saturation curve (1 − exp(−I/Fs)). Inset
to (d) shows the schematics of microscopic CPB by 1.55eV photon. . . . . . 60

Figure 5.1 Schematics of SC pair breaking channels (a), and interband tran-
sitions, (b), after fs pump photoexcitation. (c): Static THz reflectivity
spectra, normalized to the normal state spectra at 20 K, for underdoped
x = 0.047 sample, at 4.1 K and 18 K. Grey line shows the result of the
Mattis-Bardeen theory. (d) Ultrafast THz dynamics for the above under-
doped sample. Inset: The measured time–dependent THz field transients,
with gate-time (blue arrow) tgate=4.4 ps, at T=4.1K. . . . . . . . . . . . . . 64

Figure 5.2 (a) THz differential reflectivity spectra (dots) for the x=0.047 sample at
700 ps. The cusp peak marked by black arrows reflects 2∆SC . Inset shows
the MB simulation (see text). (b) Temperature–dependent ∆E/E THz tran-
sients. Left panel: ∆E/E transient at 4.1 K. Top panel: temperature de-
pendence of 2∆SC . (d) Temperature dependence of the integrated spectral
weight and peak transient amplitude. . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.3 Ultrafast THz pump probe scan at different pump fluences for (a,b) x=0.047
and (c,d) x=0.1 samples. All traces taken in the superconducting state at
T=4.1 K. Inset of (a): the initial dynamics. Inset of (c): The THz dynamics
in LuNi2B2C at pump fluence of 40 µJ/cm2. . . . . . . . . . . . . . . . . . . 66

Figure 5.4 Measured fluence dependence of the integrated spectral weight (SW): (a)
x=0.1 crystal at 5 ps (red) and 700 ps (black); (b) comparison of x=0.047
and x=0.1 samples at 700 ps. Inset: SW and ∆R/RSC exhibit the same
fluence dependence. (c) Theoretical modeling of the SC gap quench in the
overdoped region as function of photoexcited QP density ρ, with (black
line) or without (red line) inter-pocket excitonic correlation.The y-axis is
normalized by the equilibrium SC gap ∆0. (d) Theoretical comparison of
under- and over-doped regions for the photoinduced correlated SDW exci-
tonic state. Inset: Excitonic energy |E|, Eq. (5.1), as function of ρ. . . . . . 68



www.manaraa.com

xi

Figure 6.1 Figure 6.1 Pseudo–spin coherent oscillations forbidden by the equi-
librium symmetry and strong HHG nonlinearities. (a) Exper-
imental schematics. Quantum dynamics of Anderson pseudo–spins (ar-
rows) in a supercurrent–carrying macroscopic state with time-dependent
CM momentum pairing induced by an intense multi-cycle THz driving elec-
tric field. (b) QP energy dispersion of the fully-gapped equilibrium state
(left) and the gapless current-carrying state with critical condensate flow
vs ∼ 3.15 × 104cm/s along x axis (right) in our Nb3Sn sample. Note that
∆SC/EF =0.4, instead of 0.002 in Nb3Sn, is used to better visualize the
partial gap closing (supplementary). (c) Pump induced change ∆E/E for
narrow-band driving field centered at 0.5 THz (2.1 meV) shows pronounced
quantum beats. Inset to (c): Oscillation amplitudes vanish at the critical
temperature. (d) Quantum beat pump–probe experimental spectra show-
ing PSO modes at 2 ωpump, 3ωpump, 4ωpump, and THz–driven supercur-
rent at ωpump, whose amplitudes are plotted in log scale to highlight the
higher–order PSO harmonics. Inset: Simulated net supercurrent, marked
by an arrow, produced by a multi-cycle THz pulse as in the experiment
(a)-(b), driving a circuit model (supplementary). Simulated order parame-
ter dynamics in time (e) and frequency (f) domains, obtained by using the
gauge-invariant quantum kinetic theory summarized in the supplementary,
with asymmetric (red) and symmetric (green) effective input THz pulses,
and the LPS model (black). The amplitude of the forbidden 3ω peak is en-
hanced by increasing asymmetric THz driving, while even PSO harmonics
are less sensitive to this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.2 Figure 6.2 Light–Driven Gapless Superconductivity. (a) Three dif-
ferent THz temporal waveforms Epump(t) measured inside a nonlinear crys-
tal: single-cycle pulse centered at 1 THz (gray) and multi-cycle pulses cen-
tered at 0.5 THz (red) and 1 THz (blue). Their spectra Epump(t) are plotted
in (b) and compared to the static σ1(ω) (empty circles) at 4.1K. (c) Effec-

tive THz field nonlinear coupling by integration
∫ t
−∞ dτ Eeff(τ) using the

normalized THz pump pulses measured inside a nonlinear crystal shows
different tilting and oscillation cycles. Inset: integral of THz probe pulse.
(d)-(f) Quantum beating spectra of experimentally measured coherent THz
pump-probe dynamics of the supercurrent-carrying quantum state under
the three different THz driving fields shown in (a). Even and odd order
collective modes are marked by dashed lines. Inset to (d): The pump-probe
spectrum, obtained from the simulated coherent ∆E/E dynamics using the
multi-cycle 0.5 THz pump waveform in (a) (red line), exhibits collective
modes fully consistent with the experiment (supplementary, Fig. S6). Inset
to (e): PSO spectrum of a dirty limit NbN SC sample at 4.1K driven by
the multi-cycle 1THz pulse in (a) (blue line) exhibits negligible supercurrent
peak at the driving frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . 85



www.manaraa.com

xii

Figure 6.3 Figure 6.3 Light–driven gapless superconductivity by non-thermal
control of the supercurrent-carrying quantum states. Real (a) and
imaginary (b) parts of the THz-driven transient state conductivity spectra
σ1(ω) and σ2(ω) at ∆tpp=100ps as function of driving field, compared to
the static SC state at 4.1K (gray solid line) and the normal state (gray dash
line) at 18K. Inset to (b): the QP density q (red circles) was extracted by
integrating σ1(ω) spectral weight (SW) and the condensate density p (blue
circles) from the low–frequency divergence in σ2(ω). q0 denotes the normal
state QP SW. Σ=q/q0 + p/q0 (black symbol) is larger than its normal state
value of 1, which indicates a pump-induced extra SW inside the gap. (c)
Temporal dynamics of ∆E/E under three different driving fields: multi-
cycle 0.5 THz (red) and 1 THz (blue) and single-cycle (gray) pump centered
at 1 THz. Inset: ∆E/E dynamics driven by single-cycle THz pump at E field
7kV/cm and 27kV/cm. (d) and (e): Post-driving σ1 and σ2 (insets) spectra
at pump-probe delays from -10ps to 750ps in (c) for multi-cycle 0.5 THz (d)
and 1 THz (e) pumping. The observed small change in σ2 indicates that
∆E originates from the large pump induced change in σ1, which arises from
filling of the QP excitation energy gap due to long-lived supercurrent flow
with finite order parameter and minimal quenching of condensate density.
(f) Transient state conductivity spectra σ1(ω) at ∆tpp from -10ps to 1000ps
under multi-cycle 1 THz pump with 109kV/cm peak electric field at 4.1K. . 86

Figure 6.4 Figure 6.4 Gauge-invariant quantum kinetic calculation of the
density matrix for the periodically driven, supercurrent-carrying
macroscopic state. (a) The asymmetric THz waveform with peak E fields
ranging from 3.6kV/cm to 28kV/cm centered at 1THz used in the theory
simulation. (b)-(d) Temporal dynamics of condensate momentum psa0 (a0

denotes the lattice constant), SC order parameter 2∆SC and excitation en-
ergy EQP calculated for the THz waveform in (a). (e)-(g) compare the
simulation results for the state after the pulse obtained for the linear (black
rectangle) and nonlinear (red triangle) Anderson pseudospin model to those
using the full theory with symmetric (green circles) and asymmetric (blue
circles) THz pump. The latter shows excellent agreement with the exper-
imental results and allows access to three different regimes marked by red
arrows by increasing the driving field: partial quench of ∆SC and EQP , gap-
less SC state with ∆SC 6= 0 and EQP = 0, and gapless QP coherent state
without SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure A.1 A schematic of two-time, THz pump and THz probe spectroscopy of a Nb3Sn
superconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure A.2 Simulation of effective THz responses σ1 (a) and σ2 (b) for a spatially in-
homogeneous phase of SC and metallic patches for different values of filling
coefficient f=0.1 (pink), 0.5 (green) and 0.9 (blue). Shown together is the
behaviors for the pre-thermalized, gapless quantum phase (red diamond)
and static optical responses at 4.1K and 18K directly obtained in our mea-
surement (gray diamond). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



www.manaraa.com

xiii

Figure A.3 The complex optical self-energy Σ(ω, T ) in terms of both frequency-dependent,
mass renormalization (a) 1 + λ(ω) and momentum scattering rate 1/τ(ω)
(b) for various temperatures, 4K (red circles), 11K (purple star), 14K (blue
diamond) and 20K (black circles). . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure A.4 a: Mass renormalization 1 + λ(ω) of the post-quench state for various time
delays ∆tpp of -10ps (green), 12ps (purple), 500ps (gray), 1ns (pink) at
Epump=620kV/cm at 4.1K. b: The same spectral-temporal characteristics
for the normal state at 18K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure A.5 The σ2 of the post-quench states for three E fields below, at, and above the
threshold Eth (marked as E#3−#5 as shown in the Figure 3.2b of the main
text) and the equilibrium σ2 at five temperatures ranging from T=4K to
T=Tc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure B.1 Temperature dependent THz conductivity σ1(ω) (left) and σ2(ω) (right) at
4K, 16K compared to simulation done by Mattis-Bardeen theory . . . . . . 117

Figure B.2 Static THz conductivity σ1 spectrum at temperature above Tc from 18K to
180K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure B.3 Laser energy transmission through 20nm Nb3Sn film on 1mm sapphire sub-
strate. Itotal: total laser fluence used to excite sample; Iin, Iout: laser fluence
penetrating in and out from the film; Ir: film reflection; It: laser transmis-
sion through substrate; Idr: double reflection by back surface of substrate. 122

Figure C.1 Experiment scheme of optical pump-THz probe measurement. . . . . . . . . 130
Figure C.2 Simulated THz time domain measurement of SC ESC(t) (blue) and normal

state EN (t) (red) in reflection geometry under incident wave Ein(t) (grey).
∆Er(t) in green line is the difference between EN (t) and ESC(t). . . . . . . 133

Figure C.3 THz measurement of a 60nm thin film optimal doped Ba(FexCo1−x)2As2 at
short (30ps) and long (350ps) times after 1.55eV, 40fs photoexcitation. Inset
(bottom): pump-probe signals at various temperatures disappear above Tc
at 22K. Inset (top): static and time-resolved complex conductivity at 4K,
24K and non-equilibrium state at 350ps after pump. . . . . . . . . . . . . . 135

Figure D.1 Static THz conductivity spectra of (A) σ1(ω, T ) and (B) σ2(ω, T ) from 4K
to 16K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure D.2 (A) and (B) Real and imaginary of the optical conductivity σ1(ω), σ2(ω)
at 4K and 16K. (C) Material impedance calculated by using the sample
geometry, pump beam size and Terahertz conductivity in (A) and (B). . . . 150

Figure D.3 Circuit model for THz-induced supercurrent in Nb3Sn. . . . . . . . . . . . . 150
Figure D.4 (A) Asymmetric (red) and symmetric (blue) THz drivings. (B) Correspond-

ing supercurrent produced by the toy model. . . . . . . . . . . . . . . . . . 152
Figure D.5 Pseudo-spin coherent oscillation spectra in pump-probe (a) and pump emis-

sion measurements (b) using narrow band THz pump centered at 0.5THz
through Nb3Sn film at 4K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure D.6 (a)-(b) Dynamics of total current and THz pump-probe response. The corre-
sponding spectra are plotted in (c)-(d) ((e)-(f)) in linear (semi-logarithmic)
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



www.manaraa.com

xiv

Figure D.7 Asymmetry of the experimental and theoretical pulses. The dynamics of (a)
0.5THz and (b) 1.0THz experimental (blue line) and theoretical (red line)
pump pulses are shown. The corresponding spectra are plotted in (c) and
(d). The asymmetry of 0.5THz and 1.0THz pulses are 3% and 2% (see text
for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



www.manaraa.com

xv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to those who helped me during my

PhD study. First and foremost, I cannot thank my advisor Dr. Jigang Wang too much for his in-

sightful guidance, patience and support from all respects. I spent five wonderful years in the group

and really enjoyed this journey of discoveries. Second, my research cannot be done without our

excellent collaborators. We get strong theory support from Dr. Martin Mootz, Dr. Ilias Perakis at

University of Alabama-Birmingham and Dr. Peter Orth at Iowa State University. Marvelous data

are taken on high quality samples from Dr. Chang-Beom Eom’s group at University of Wisconsin-

Madison, Dr. Xinyu Liu at University of Notre Dame , and Dr. Paul Canfield’s group at Iowa

State University. I really appreciate the guidance from my committee members: Dr. Peter Orth,

Dr. Rebecca Flint, Dr. Kirill Tuchin and Dr. Patricia Thiel. I would additionally like to thank

Dr. Liang Luo for his guidance at the initial stages of my research and Chirag Vaswani for his

assistance in my later experiment. Zhaoyu Liu, Di Chen, Richard Kim, Dr. Jong-Mok Park from

our group and many others throughout department never hesitate to provide their help, which I

would always be grateful to.

This work was supported by Army Research office under Army Research office award W911NF-15-

1-0135 (THz spectroscopy) and U.S. Department of Energy (DOE), Office of Basic Energy Science,

Division of Materials Sciences and Engineering at the Ames Laboratory under contract number

DE-AC02-07CH11358. The Ames Laboratory is operated for the DOE by Iowa State University.

The document number assigned to this thesis/dissertation is IS-T3244.



www.manaraa.com

xvi

ABSTRACT

This thesis summarizes my PhD work on intense Terahertz (THz) light-quantum quench and

control of superconductivity. BCS superconductor Nb3Sn and iron based superconductor Ba(Fe1−xCox)2As2

are studied by intense THz/optical pump/-weak THz probe ultrafast spectroscopy. I design and de-

velop the experiment setup that reaches the strongest THz pump reported so far in similar tabletop

configurations. Single cycle THz pulses up to MV/cm peak E field open up a new regime to explore

the quantum dynamics and emergent phase in condensed matter system, including superconduct-

ing (SC) condensate, topological Dirac fermions, exciton phase transition, quantum coherence in

perovskite solar cell and 2D materials.
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CHAPTER 1. OVERVIEW

Ultrafast spectroscopy is a powerful tool to study non-equilibrium dynamics of condensed matter

system. Ultra-intense, very short laser pulse not only provide necessary fast time resolution, but

also serves as seed to access a broad spectra from X-ray to infrared by nonlinear process. Together

with laser scanning techniques, ultrafast spectroscopy opens up a new regime to resolve quantum

dynamics in the complex materials by a multi-color–temporal/spatial resolved fashion.

Light-matter interaction from X-ray to mid-infrared wavelength has been extensively explored

in the last few decades, thanks to the development of modern photonics and electronics. However,

their Terahertz dynamics are rarely reported due to lack of efficient Terahertz radiation source.

Many interesting phenomena lie in the Terahertz band, such as rotational energy of molecules,

lattice vibrations in solids, intra-band transitions in semiconductors, and superconductivity. It is

not until recently that single cycle Terahertz pulse with peak E field up to MV/cm is accessible via

tilted phase front matching technique by tabletop ultrafast laser system.

With both pump and probe in Terahertz regime, laser heating from excessive photon energy

is minimized for narrowly gapped, strongly correlated system, like superconductivity (SC). On

the other hand, electric field, rather than photon energy is the dominant factor in light-matter

interaction, serving as a new tuning knob to actively control material properties at ultrafast time

scales.

In Chapter 2, we introduce basic principles of ultrafast laser spectroscopy, Terahertz detection

and generation techniques. Our experiment setup and data analysis method are described in details,

especially the effort to generate intense Terahertz pulse at MV/cm peak E field. In Chapter 3,

we reveal a post-quench, pre-thermalization gapless state hidden underneath SC dome in Nb3Sn

superconductor induced by non-thermal, non-adiabatic Terahertz quench. In Chapter 4, thermal

nature of optical pumping is demonstrated by applying 1.55eV fs photoexcitation, in comparison
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to non-thermal Terahertz quench. For the first time we observe quantum-limit energy transfer, i.e.

one photon breaks one Cooper pairs despite their large energy mismatch. In Chapter 5, we studied

Terahertz dynamics of pair breaking process in iron pnictide superconductor system, and discovered

a photo-induced excitonic state within electron-hole pockets. In Chapter 6, we demonstrate the

first gapless superconductivity state and forbidden pseudo spin mode in BCS superconductor, by

engineering Terahertz driven nonlinear current. Last chapter is a brief summary of my PhD work

and outlook for future research.
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CHAPTER 2. INTRODUCTION

In this section, we give a brief introduction to fundamental principles of ultrafast spectroscopy

and Terahertz science (1), which is used to drive our experiment setup. Optical design, data taking

scheme and analysis method are also described in the following section.

2.1 Principle of Lasers

The shortest time resolution ever reached so far is by ultrafast lasers. The word ”laser” is short

for ”light amplification by stimulated emission of radiation”. A laser consists of three parts: gain

medium, pumping energy and cavity to provide positive feedback, as shown in Figure 2.3. The gain

medium is used to generate and amplify stimulated emission, energized by pumping source, like

electric current or light. Selective optical modes interferes constructively within the laser cavity

and output through one cavity mirror with less reflectivity. Since the first laser demonstration

by Dr Theodore H. Maiman in 1963, laser has been widely used in scientific research, industry

manufacturing, telecommunication, etc., making a huge impact on people’s everyday life.

Figure 2.1 A simple design of Laser consists of cavity mirrors, gain medium and external

pumping.
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2.1.1 Einstein AB Coefficient

The concept of “stimulated radiation” was established along with the development of quan-

tum mechanics. First discovery to the quantum world is Planck’s formula to describe black body

radiation:

I(ω)dω =
h̄ω3dω

π2c2(eh̄/kT − 1)
. (2.1)

where I(ω) stands for intensity of the angular frequency distribution in the small interval dω, h̄ is

Planck constant, k is Boltzmann’s constant, T is the equilibrium temperature and c is the velocity

of light in vacuum. For the first time it brings about the concept of ”quantum” when describing

microscopic behaviors of electrons, photons, etc.

Figure 2.2 Einstein AB coefficient for two-level system.

Second big success is Bohr’s model for hydrogen atom. Based on these two discoveries, Einstein

realized that three types of processes should be included in the black body radiation: spontaneous

emission (Anm), stimulated absorption (Bmn) and stimulated emission (Bnm). The probability of

electron transition for these processes are named as Einstein AB coefficients. For static two-level

system in Figure 2.4, number of photon emitted equals the number of absorbed photons:

NmBmnI(ω) = NnBnmI(ω) +NnAnm (2.2)

At thermal equilibrium, relative populations on two levels separated by an energy h̄ω at temperature

T, Nn/Nm = exp(−h̄ω/kT ), is applied to Equation 2.2, one gets:

I(ω) =
Anm

Bmneh̄ω/kT −Bnm
(2.3)
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This is exactly the same form of Planck black body radiation formula (Equation 2.1). Comparing

these two formulas leads to:

Anm/Bnm = h̄ω3/π2c3;Bnm = Bmn (2.4)

In stimulated emission, a twin photon is generated when a photon with energy h̄ω passes

through an excited atom, with the same excitation energy level. This new photon has the same

energy, propagation direction, polarization state and phase. Light is amplified at optical gain of

two in this elementary process.

Overall light amplification is realized when stimulated emission surpasses light absorption in

the medium. This is achieved by population inversion as Nn > Nm. After replacing Anm, Bmn in

Equation 2.2, one can get:

BnmI(ω)(Nm −Nn) = Nn
h̄ω3

pi2c3
Bnm > 0 (2.5)

when Nm > Nn. It is easy to see that population inversion can never be satisfied In two-level

system.

Figure 2.3 Population inversion in three-level system.
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2.1.2 Population Inversion

Fortunately, real materials have complicated many quantum states and two-level systems are

rare in nature. Three-level system can be used as gain medium to realize population inversion, as

shown in Figure 2.5. Electrons at level 1 are excited to level 3 by optical pumping, whose rate is

denoted by Wp. Electrons at level 3 can decay to either level 1 at rate W31 or level 2 at W32. W31

is the combined decay rate of stimulated Wp (as discussed above, Bnm = Bmn) and spontaneous

emission W sp
31 , which gives:

W13 = Wp +W sp
13 > Wp (2.6)

Rate equations can be easily derived to model the dynamical process as:

dN3

dt
= WpN1 −W32N3 −W31N3

dN2

dt
= W32N3 −W21N2

N = N1 +N2 +N3

(2.7)

At static state, time derivative of particle population at each state vanishes and we can get:

N2

N1
≈ Wp

W21
(1− W31

W32
) (2.8)

From equation above, we can see that efficient population inversion N2/N1 >> 1 requires:

W31 << W32 W21 << Wp (2.9)

and in strong pumping regime, it is reasonable to assume:

W21 << W32 W31 << Wp (2.10)

Under such assumptions of Equation 2.9, (1− W31
W32

) ≈ 1, and we have:

∆N = N1 −N2 ≈ N2(
W21

Wp
− 1) = N

Wp

Wp +W21
(
W21

Wp
− 1) < 0 (2.11)

Equation 2.9 indicates that most of electrons decay to level 2 instead of level 1. Equation 2.10

shows that strong pump and metastable middle level 2 are favorable for light amplification. Under
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these conditions, excited electrons accumulate at level 2 and population inversion is established

between level 1 and 2.

The light intensity propagating along z axis through gain medium can be described by Lambert-

Beer’s law:

dI(z)

dz
= −I(z)∆Nσ12 (2.12)

where σ12 is the stimulated-emission cross-section of the transition. Then light intensity increases

as propagates through gain medium.

Figure 2.4 Four-level system.

More efficient gain medium used in laser proves to be four-level system, as shown in Figure 2.4.

In this case, population inversion is achieved between level 3 and 2, by assuming W43 >> W41,

W21 >> W32, W21 ≈ W43. Electrons at ground state get excited to level 4 by optical pumping

and quickly decay to level 3, whose lifetime is much longer. Since level 2 is empty at beginning,

any electrons at level 3 will lead to population inversion. De-excited electrons transfer to level 2

through stimulated emission, quickly relax to level 1 and pumped to highest energy. Similarly, rate
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equations can be worked out in four-level system:

dN4

dt
= WpN1 −W43N3 −W41N4

dN3

dt
= W43N4 −W32N3

dN2

dt
= W32N3 −W21N2

N = N1 +N2 +N3

(2.13)

By assuming strong pumping condition Wp >> W32, we get:

∆N ≈ N(
Wp

Wp +W43
) (2.14)

Surprisingly, simple rate equations accurately describes the electronics structures and dynamical

quantum behavior of gain medium. Four-level model mimics chromium ion dissolved in alumina

(ruby) very well, which is the gain medium in Ti-Sapphire ultrafast laser, light source of our

experiment setup.

2.1.3 Cavity Mode

Coherent stimulated light emission interferes constructively between two high-reflectivity mir-

rors, which forms a Fabry-Perot (FP) resonator. Laser beam, with well defined wavelength, photon

coherence and directionality, comes out from less reflective side of FP cavity.

Longitude mode inside FP cavity at length L must satisfy standing wave condition:

mλ = 2L, m ∈ N+. (2.15)

There exists finite number of modes, as long as grain is greater than loss. Laser emission is the

summation of all these modes. Detailed calculation of cavity parameter and latitude mode can be

found in somewhere else (1).
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2.2 Generation of Ultrashort Pulse

2.2.1 Propagation of Ultrashort Pulse

Laser design discussed in last section can only generate continuous wave, which cannot be used

to resolve ultrafast phenomena. Only short pulse can provide much needed time resolution. From

Fourier transformation, we know that wave bandwidth and temporal length has the relation:

∆t∆ω ≥ 1

2
(2.16)

Equality to 1/2 is reached only by Gaussian wave, which is also called transform-limited wave:

Ey = Re(E0exp(−Γt2 + iω0t)). (2.17)

And frequency spectrum is:

E0(ω) = E0exp(−
−(ω − ω0)2

4Γ
). (2.18)

From the relation, we can see that ultra-broad bandwidth is required to generate ultra-short pulse.

However, transform-limited waveform may be distorted when pulse propagates through disper-

sive medium. First type of distortion is called optical chirp, when a quadratic time dependence is

added to the original phase term:

Ey = Re(E0exp(−Γt2 + i(ω0t− at2))). (2.19)

Instantaneous frequency is:

ω(t) =
∂Φ

∂t
= ω0 + αt (2.20)

So the leading edge is blue shifted compared to trailing edge.

Second factor is group velocity dispersion. Gaussian wave propagating a distance x in a disper-

sive medium can be expressed as:

E0(ω, x) = E0 · exp(−
−(ω − ω0)2

4Γ
)exp[−ik(ω)x]. (2.21)

where k(ω) is frequency dependent wave vector:

k(ω) = k(ω0) + k′(ω − ω0) +
1

2
k′′(ω − ω0)2 (2.22)
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Wave spectrum is modified:

E0(ω, x) = E0 · exp(−ik(ω0)x− ik′(ω − ω0)− (
1

4Γ
+
i

2
k′′)(ω − ω0)2). (2.23)

Temporal E field oscillation can be obtained by applying Fourier transformation:

E0(ω, x) = E0

√
Γ(x)

π
· exp[iω0(t− x

vφ(ω0)
)] · exp[−Γ(x)(t− x

vg(ω0)
)2]. (2.24)

where

vφ(ω0) = (
ω

k
)ω0 vg(ω0) = (

dω

dk
)ω0

1

Γ(x)
=

1

Γ
+ 2ik′′x (2.25)

The phase velocity vφ measures the propagating speed of plane wave components, group velocity

vg is the speed of wave envelope, either delayed or advanced phase velocity. Clearly the wave is

broadened temporally since Γ(x) > Γ. After working out some math, the last term in Equation

2.21 is:

exp[− Γ

1 + ξ2x2
(t− x

vg
)2 + i

Γξx

1 + ξ2x2
(t− x

vg
)2] (2.26)

where ξ = 2Γk′′. First term shows that pulse undergoes broadening under group velocity dispersion

k′′. Second term is in the same form of optical chirp described by Equation 2.16.

Figure 2.5 Grating pair to change group dispersion.

In order to compress pulse duration of distorted wave, a pair of gratings can be used to com-

pensate group velocity dispersion. Dispersion induced by two gratings have opposite sign, which
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implies the parallel grating orientation. The diffraction due to grating is:

d(sin γ + sin θ) = λ (2.27)

After some simple derivation, group delay along trajectory ABC is:

t =
b

c
(1 + sin θ sin γ) (2.28)

and dispersion parameter can be expresses by:

D =
1

b

dt

dλ
=

λ

cd2
[1− (

λ

d
− sin γ)2]−1

k′′ = − λ3

2π2c2d2
[1− (

λ

d
− sin γ)2]−1 (2.29)

So a pair of gratings are able to compensate either positive or negative group dispersion by choosing

right parameters.

2.2.2 Mode-Lock and Gain Broadening

Figure 2.6 Comparison between optical modes with random phases and fixed phase (mod-

e-lock).

As we discussed in Section 2.2.3, laser cavity is able to support many longitude modes whose net

gain g > 0, i.e. difference between light amplification and cavity loss should be greater than zero.
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Bandwidth of one mode is clearly not enough to generate fs ultrashort pulse. The technique to have

constructive interference between different modes and couple them together is called “mode-lock”

(ML). The most important criteria for ML is to lock phase of each cavity mode, otherwise random

phase could smear out the interference features, as shown in Figure 2.6. There are two main mode-

locking methods developed so far: passive mode-locking by inserting a saturable absorbing medium

into cavity, or active mode-locking from an external modulation at frequency Ω of either cavity loss

(by inserting an acoustic-optical crystal) or gain of amplifying medium.

Figure 2.7 Homogeneous and inhomogeneous gain broadening effect.

Another important concept is gain (g(ω)) broadening, which can be categorized into two types:

homogeneous and inhomogeneous (1).

Figure 2.8 Inhomogeneous saturation and hole burning effect.

Inhomogeneous broadening is an increase in the linewidth of an atomic transition determined

by wavelength. Two main factors for inhomogenenous broadening are Doppler effect and lattice
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defects. At the frequency of cavity mode emission, a hole is burned upon gain spectrum g(ω) and

laser emission from different modes could survive simultaneously. Ultrashort pulse can be generated

when phase between different modes are locked together.

Figure 2.9 Homogeneous saturation.

Homogeneous broadening, on the other hand, refers to effects which increase the optical linewidth

of an electronic transition equally for all radiating or absorbing atoms, ions or molecules. The

spectral shape of the transition cross sections of all involved atoms are the same. Common reasons

include finite lifetimes of the energy levels and molecule collision.

Homogeneous saturation refers to the case when the lineshape of the gain spectrum is not mod-

ified by pumping. Since inverted population ∆N is consumed by laser emission, system undergoes

continuous drop of gain spectrum until only one longitude mode in the center survives when gain

compensate the loss (as shown in Figure 2.9). Clearly this situation of single mode survival is not

favorable for ultrashort pulse generation.

2.2.3 Ti-sapphire Oscillator-Amplifier System

The ultrafast laser used in our experiment is commercial Ti-sapphire Oscillator-Amplifier system

from Spectra-Physics. The gain medium is Ti-doped sapphire crystal which has very broad emission

spectrum from 600-1100nm, ideal for short pulse generation. As we mentioned above, the energy

level can be model as four-level system.

A Millennia laser consist of two laser diodes which can supply 10 W of 532 nm power as optical

pump for Tsunami oscillator. The oscillator generates 30fs pulse at 78MHz repetition rate, which

provide seed light for further amplification by Spitfire amplifier. The Tsunami laser head contains
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Figure 2.10 (A): Absorption and emission spectra of Ti:sapphire. (B): Energy level struc-

ture of Ti3+ in sapphire.

the Ti:sapphire rod and the optics that form the resonator cavity. Elements include pump beam

mirrors (M), rod focusing mirrors (M), an output coupler (OC), a high reflector (HR), beam folding

mirrors, dispersion control elements (Pr), acoustic modulator (AOM) for mode locking and other

tuning elements. The laser design is shown below (2).

Figure 2.11 Configuration of Tsunami Oscillator.

Laser pulse from oscillator is further amplified by regenerate amplifier to 3mJ pulse energy, 35fs

duration, 1KHz repetition rate and 800nm center wavelength. The maximum output energy of a

solid-state amplifier is normally limited by the optical damage threshold of the crystalline material
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used in the system. This limitation is circumvented by using “chirped pulse amplification”. Optical

seed pulse is first stretched temporally to reduce its peak power by a pair of gratings, then gets

amplified, and finally recompressed by a second grating pair to a width close to its original duration.

It consists of Faraday rotator (FI), aperture (A), mirrors (M), concave mirrors (CM) and Pockels

cell to select pulse. The configuration is shown in Figure.

Figure 2.12 Configuration of Spitfire laser amplifier.

2.3 Terahertz generation and detection technique

Very bright ultrafast laser pulse opens the door to a broadband wavelength by nonlinear optics.

Figure 2.13 presents the accessible spectrum output from optical parametric amplifier (OPA) driven

by Ti-sapphire ultrafast laser. In this section, we will focus on generation and detection techniques

of Terahertz (THz) wave.

Figure 2.13 Available spectrum from non-linear process by ultrafast laser.
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2.3.1 Introduction to THz radiation

THz refers to the electromagnetic (EM) wave from 0.1-10THz right between microwave and

infrared band. A simple conversion of 1THz electromagnetic wave is:

1THz ∼ 300µm ∼ 4.1meV ∼ 1ps ∼ 48K (2.30)

EM spectrum at THz band remains unexplored until the recent two decades along with advances

in ultrafast lasers. THz science has demonstrated great potential in applications like safe imaging,

high speed computation, space exploration, spectrum analysis etc. (3).

Figure 2.14 THz and adjacent electromagnetic radiation

For material science, many important phenomenon lie in THz band, such as lattice vibration,

spin precession, cooper pairs in superconductor. THz wave provides an effective tool to probe and

control these processes resonantly. Large E field of intense THz wave is also able to accelerate

carriers in semiconductor and induce insulator-metal transition in VO2 compound (4).

2.3.2 THz Generation by Optical Rectification

For the past years, a few approaches have been developed to generate and detect THz radia-

tions, such as quantum-cascade lasers (QCLs) (1), photoconductive antennas (PCAs) (2), optical

rectification (OR) (3), free electron lasers (FELs) (4), bolometers, pyroelectric detectors, etc. Here

we focus on THz generation by optical rectification in ZnTe non-linear crystal.
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Figure 2.15 THz control of materials. Resonant control: (A) Lattice vibration of SrTiO3,

(B) spin precession in SmFeO3, (C) Cooper pairs in superconductor; Non-res-

onant control: (D) Insulator-metal phase transition in VO2, (E) Impact ion-

ization in narrow bandgap semiconductor.

Nonlinear polarization induced by optical rectification is:

P
(2)
i (0) =

∑
j,k

ε0χ
(2)
ijk(0, ω,−ω)Ej(ω)E∗k(ω) (2.31)

among which i, j, k are indices for the Cartesian components of fields, χ
(2)
ijk is the second-order

nonlinear susceptibility tensor element for the crystal system. Many of the tensor components are

zero due to crystal symmetry. For ZnTe, Equation can be simplified to:
Px

Py

Pz

 = 4ε0d14E
2
0 sin θ


cos θ sin θ

cos θ cos θ

sin θ sinφ cosφ

 (2.32)

So intensity of THz radiation is:

ITHz(θ, φ) ∝ |P |2 = 4ε20d
2
14E

4
0 sin2 θ(4 cos2 θ + sin2 θ sin2(2φ)) (2.33)

Strongest radiation is obtained when laser polarization lies in 110 plane, which gives sin2 2φ =

1 φ = π
4 ,

3π
4 . Then THz intensity is written as:

ITHz(θ) =
3

4
ImaxTHz sin2 θ(4− 3 sin2 θ) (2.34)
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when ImaxTHz is reached at θ = sin−1
√

2
3 = 41.8◦. In experiment, laser polarization is aligned [111],

while generated THz emission has the same polarization.

Figure 2.16 (A) ZnTe crystal structure; (B) Laser polarization in 110 plan; (C) (D) ampli-

tude and polarization of THz E field. α is THz polarization in the coordination

of (B) with respect to [001].

2.3.3 Free-Space Electro-Optic Sampling

THz E field oscillation can be sampled by a second laser pulse in time domain through Pockels

effect, which refers to non-linear process when optical index of material is modulated by applied

electric field. It has the expression of second-order nonlinearity:

P
(2)
i (ω) = 2

∑
j,k

ε0χ
(2)
ijk(ω, ω, 0)Ej(ω)Ek(0) =

∑
j

ε0χ
(2)
ij (ω)Ej(ω) (2.35)

where χij(ω) = 2
∑

k χ
(2)
ijk(ω, ω, 0)Ek(0) is the field induced susceptibility tensor. Sampling beam

polarization is rotated by crystal birefringence and picked up by optics shown in Figure 2.17.
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Figure 2.17 (A) Polarization of incident THz and optical light; (B) Optics to read out

polarization state change of sampling beam.

Then we calculate relation between ETHz and optical signal size from balance detector. The

matrix for Equation is :


Px

Py

Pz

 = 4ε0d14


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





EO,xETHz,x

EO,yETHz,t

EO,zETHz,z

EO,yETHz,z + EO,zETHz,y

EO,zETHz,x + EO,xETHz,z

EO,xETHz,y + EO,yETHz,x


= −4ε0d14EOETHzez ⊥ EO

(2.36)

where

EO =
EO√

2


1

−1

0

 ; ETHz =
ETHz√

2


1

−1

0

 . (2.37)

The non-linear P is orthogonal to incident optical beam, indicating the polarization is transformed

from linear to elliptical shape after transmitting through ZnTe crystal in presence of THz E field.
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The differential phase retardation ∆φ can be calculated as:

∆φ = (ny − nx)
ωL

c
=
ωL

c
n3
Or41ETHz (2.38)

in which nO is the refractive index at optical frequency and r41 is the non-linear coefficient for EO

sampling. Intensity of two beams by Wollaston prism, under small rotation approximation, is:

Ix =
I0

2
(1− sin ∆φ) ≈ I0

2
(1−∆φ)

Iy =
I0

2
(1 + sin ∆φ) ≈ I0

2
(1 + ∆φ)

(2.39)

Signal from balanced detector can be written as:

Is = Iy − Ix = I0∆φ =
I0ωL

c
n3
Or41ETHz ∝ ETHz (2.40)

We could use a much shorter optical sampling pulse to measure the real time E field oscillation. In

this way, not only the amplitude, but also phase of THz wave is determined accurately. Spectrum

after Fourier transformation T̃ is complex, containing both amplitude and phase information. From

T̃ , optical response from film materials can be extracted according to Fresnel equations. The setup

is called “THz-TDS”, in short for “THz time domain spectroscopy”.

2.3.4 Generation of Intense THz Wave

From the equation above, we can see that efficient THz generation has several requirements:

large non-linear coefficient, high saturation fluence, high transmission and phase matching between

THz and optical light. ZnTe’s ability to generate intense THz pulse is limited by its small non-linear

coefficient (d14 = 4pm/V ) and low saturation fluence.

Free electron laser emission covers spectrum from millimeter wave to X-ray, however access to

such large facility is quite limited. LiNbO3 is another option for THz generation with large electro-

optic coefficient d33 = 27pm/V . But it is inefficient for conventional co-linear optical rectification

scheme due to large index mismatch between 800nm group and THz phase index, which are nO =

2.3, nT = 5.2 respectively.

An ingenious way to circumvent the velocity mismatching is to use Cherenkov radiation. It

refers to electromagnetic radiation emitted from a charged particle moving through a dielectric
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Figure 2.18 (A) Sonic boom; (B) Blue light radiation by electron Charenkov radiation in

nuclear plan; (C) THz generation by tilted phase front in MgO doped LiNbO3

crystal; Cherenkov radiation of a particle in (D) and plan wave in (E).

medium at a speed greater than the phase velocity of light in that medium. Two famous examples

are the sonic boom around ultrasonic jet, and the blue light emission by electrons with velocity

greater than light in cooling water. Radiation propagates along the conical surface at angle θc:

θc = arccos(
vp
vg

) (2.41)

which compensate the velocity mismatch between electron and light. Similarly, the phase front of

optical light can be steered to θc as

θc = arccos(
vp
vg

) = arccos(
nO
nTHz

) = 64◦ (2.42)

by grating dispersion (Figure 2.18). Each spectral component on the tilted wave front, in analogy

to electron, radiates THz when propagating inside LiNbO3 crystal. Sum over whole spectrum will
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lead to constructive interference on one side and destructive interference on the other side, which

satisfies phase matching condition for optical rectification.

In experiment, LiNbO3 is doped with MgO to increase the breakdown fluence. Crystal is cut

in 64◦ angle prism shape. Intense THz pulse, with peak E field up to 0.9MV/cm, B field as large

as 0.2T, exits the angled crystal plane and gets focused at sample position.

2.4 Ultrafast Spectroscopy

The access to ultrashort pulse makes it possible to study ultrafast dynamics in materials. This

section gives a brief introduction to ultrafast science and spectroscopy.

2.4.1 History of Ultrafast Science

The ultrafast science can be dated back to an argument by punters in a bar: does galloping horse

ever lifts all four feet completely off the ground during gait? This interesting question, which is

clearly beyond the capability of human eyes, caught attention of Leland Stanford, the industrialist

and horseman. He commissioned Eadweard Muybridge, a professional photographer, to find a

method to resolve this argument (5).

Figure 2.19 (A): Bar bet: Galloping horse ever lifts all four feet completely off the ground

during the gait? (1878) 1/2000s per frame. (B): How to Make Applesauce at

MIT (1964) 1/1 million s per frame. (C): Ultrashort laser pulse shot through

bottle of water (2013) 1/1 trillion s per frame.

At Stanford’s farm in Palo Alto, Eadweard placed the 24 cameras, 27 inches apart along a track

parallel to the horse’s path. Shutters of cameras were controlled by trip wires triggered by the
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horse’s legs. The photographs were taken in succession one twenty-fifth of a second apart, with the

shutter speeds less than 1/2000 s. Finally he was able to make a short movie from 16 frames of

such pictures . As shown in Figure 2.19, one picture clearly shows all four feet in air for a galloping

horse. There were also rumors that Stanford had a large bet riding on the outcome of this study.

Figure 2.20 Time scale of everything

However, the pursuit of speed never stops. Among all these achievement, the most famous one

might be a picture which captures the moment when bullet flew through an apple, shot by Professor

Harold Edgerton, also known as Papa flash at MIT. (5). He invented short duration electronic flash

and pushed high speed photography to 1/million second per frame. Nowadays technique is able to

reach 1/trillion second per frame, making it possible to shoot a movie of light transmitting through

water (6).

Figure 2.20 shows the time scale we have ever studied so far, from the shortest optical pulse

to the clock rate of CPU, life expand of human and the age of universe. The physical process in
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condensed matter is from fs to ns. We will need probe at fs duration to captures the fast interaction

of electrons, holes, spins, phonons etc, which is realized by the ultrafast lasers.

2.4.2 Ultrafast Pump-Probe Spectroscopy

The essential tool to study ultrafast phenomenon is femtosecond laser, which has fs time reso-

lution and extremely high peak intensity due to compressed energy into a very short time window.

Laser beam is split into two paths: strong side is normally used as optical pump and weak one as

probe. Laser pulse with very high peak intensity is able to excite many kinds of phenomena such

as ionization, lattice vibration, phase transition, transient currents and polarization etc. Specific

process can be isolated by selecting pump-probe wavelength and their distinct time scales. Opti-

cal properties of materials are modified accordingly like magnetization, polarization, conductivity,

permittivity, non-linear dielectric constant. Pump induced change is captured by probe at a later

time, from which we can peek into the ultrafast microscopic physical process inside the complex

material systems.

Figure 2.21 Schematic for ultrafast pump-probe measurement.

The scheme of ultrafast pump-probe measurement is plotted in Figure 2.21. Optical delay

between pump and probe is tpp. We can understand pump-probe measurement in analogy to high-

speed photography in Figure 2.19(B): optical pump→bullet , probe→flash light, detector→camera,

apple→ materials we are interested in.
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2.5 THz pump-THz probe spectroscopy

2.5.1 Experiment setup

For time resolved ultrafast THz pump-THz probe measurement, a Ti-Sapphire amplifier with

pule energy at 3mJ, pulse duration at 40fs, 1KHz repetition rate and 800nm center wavelength was

split into three paths: pump, probe and sampling (Figure 2.22).

Gate pulse 

Delay Line

Ti: Sapphire 

Ultrafast Laser

Pump-Probe

Delay Line

Balance 
detector

Boxcar 
Integrator

DAQ board

Chopper

Chopper

HWP

HWP

HWP ZnTe

ZnTe

QWP

WP

Sample

WGP

WGP

WGP

Pump

Probe

Sampling/Gate

BS BS

LN crystal

Grating

35fs, 3mJ, 1KHz

Cryostat:
4K~500K

Figure 2.22 Experimental setup of THz pump-THz probe spectroscopy. BS: beam splitter;

HWP: half wave plate; AL: achromatic lens; LN: MgO doped LiNbO3; WGP:

wire grid polarizer; QWP: quarter wave plate; WP: Wollaston prism

The intense THz pump pulses were generated by the tilted-pulse-front phase matching method

through 1.3% MgO doped LiNbO3 crystal, of which experimental scheme follows (7). The weak

THz probe pulses were generated by optical rectification and detected by free space electro-optic
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sampling through 1mm thick (110) ZnTe crystal. Pump and probe THz pulse with orthogonal

polarizations was combined by a wire grid polarizer in collinear geometry and focused on sample at

normal incidence. Two extra wire grid polarizers were placed before the beam combiner to purify

pump THz polarization. By rotating the first wire grid polarizer, we were able to tune pump THz E

field continuously. Specifically speaking, 800nm beam from amplifier was s-polarized, perpendicular

to the sheet. Pump THz E-field was parallel to 800nm polarization, while probe E-field was

perpendicular to 800nm. Spot size of pump and probe on sample were 1.2mm, 0.8mm respectively.

After sample, pump THz pulse was blocked by another wire grid polarizer and transmitted probe

THz E field was sampled by 800nm pulse. The output signal from balanced detector was integrated

by Boxcar and sent to DAQ board together with the chopper synchronization signal.

Figure 2.23 Experimental setup of THz pump-THz probe spectroscopy. Temporal pulse

sequence of static THz transmission measurement.

Our data taking scheme is well described by Shimano’s paper (8) except for different chopping

frequency. For static THz transmission measurement without pump, probe pulses were chopped

by 500Hz and transmitted probe E field is obtained by subtracting adjacent pulse signal.

Et = S0− S1. (2.43)
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Figure 2.24 Temporal pulse sequence of pump induced probe transmitted THz E field

change measurement.

For pump induced probe E field change measurement, pump and probe pulses were chopped at

500Hz and 250Hz simultaneously. One period of pulses consists of 4 channels: pump on probe on,

pump off probe on, pump on probe off, pump off probe off. By subtracting the pump leakage from

the signal, transmitted probe E field change induced by pump ∆E is:

∆E = (S0− S2) + (S1− S3). (2.44)

2.5.2 Complex conductivity extraction:

Optical conductivity was calculated from complex transmission t̃(ω) by comparing transmitted

E field through film sample to reference. The index of vacuum is assumed to be 1.

For reference, according to Fresnel equation, the complex transmission t̃ref is:

t̃ref =
Erefout

Ein
=

4nsub
(1 + nsub)2

eiβsub

eiβ
ref
sub

. (2.45)
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where βsub = 2π
λ0
nsubdsub, β

ref
air = 2π

λ0
dsub and Ein is the incident THz E field.

For a thin film sample on a substrate, coherent light propagation must be considered (9).

According to transfer matrix, the complex transmission t̃s is:

t̃s =
Esout
Ein

=
2nsub

(1 + nsub)

eiβsub

eiβ
s
air

2

(1 + nsub) cosβs − (ns + nsub
ns

)i sinβs
. (2.46)

where βs = 2π
λ0
nsds, β

s
air = 2π

λ0
(dsub + ds). By compared the transmitted THz E field through

sample and reference, measured complex transmission in experiment t̃exp is:

t̃exp =
Esout

Erefout

=
t̃s

t̃ref
=

1 + nsub
(1 + nsub) cosβs − (ns + nsub

ns
)i sinβs

× e−i
2π
λ0

(ds+δdref )
. (2.47)

Here δdref is the phase correction due to small different thickness between sample substrate and

reference. Take the corrected transmission as:

t̃cor = t̃exp × e
i 2π
λ0

(ds+δdref )
. (2.48)

Then we shall have:

t̃cor =
1 + nsub

(1 + nsub) cosβs − (ns + nsub
ns

)i sinβs
(2.49)

In the thin film limit, βs << 1:

cosβs ∼ 1, sinβs ∼ βs. (2.50)

. Then the complex dielectric coefficient of sample is:

ε̃ = n2
s = (1 + nsub)

(
1− 1

t̃cor

)
c

i · 2π · ds · f
− nsub. (2.51)

And complex conductivity is:

σ̃ =
iω

4π
(1− ε̃). (2.52)

In our measurement of Nb3Sn, the phase correction is chosen to make σ1, σ2 all positive either with

or without pump, which is less than 1% of substrate thickness.
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2.6 Introduction to superconductivity

2.6.1 General properties

Superconductivity is a quantum mechanical phenomenon of vanishing electrical resistance and

expulsion of magnetic flux fields in certain materials, when cooled below a characteristic critical

temperature Tc (10). It is characterized by Meissner effect, the complete ejection of magnetic field

from interior, even for field in an originally normal sample. It CANNOT be explained by perfect

conductivity, which would tend to trap flux in. According to BCS theory of superconductivity, such

exotic behavior is the result of electron pairing (Cooper pair) condensation to a single macroscopic

quantum state.

The existence of such reversible Meissner effect implies that superconductivity will be destroyed

by a critical magnetic field Hc, which is related thermodynamcially to the free-energy difference

between normal and superconducting states in zero field, the so called condensation energy of the

superconducting state (12). That is:

H2
c (T )

8π
= fn(T )− fs(T ) (2.53)

where fn and fs are the Helmholtz free energies per unit volume in the respective phases in zero

field. Hc(T ) drops as temperature increases and vanishes above Tc.

Depending on the manner on which penetration occurs at increasing field for cylindrical shaped

samples with their axes parallel to the applied magnetic field, there are two clearly distinguishable

types of superconductors.

Type I Below a critical field Hc(T ) that increases as T falls below Tc, there is no penetration of

flux. When applied field exceeds Hc(T ) , the entire specimen reverts to the normal state and the

field penetrates perfectly.

Type II Below a lower critical field Hc1(T ) there is no penetration of flux, when the applied field

exceeds an upper critical field Hc2(T ) > Hc1(T ), the entire specimen reverts to the normal state

and field penetrates perfectly. When applied field strength is between Hc1(T ) and Hc2(T ), there is

partial penetration of flux, and the sample develops a rather complicated microscopic structure, i.e.
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vortex states of both normal and superconducting regions known as mixed state. The magnetization

curve corresponding to Type I and II superconductor behavior is shown in Figure 2.25.

Figure 2.25 Magnetization of Type I and II superconductor vs applied magnetic field (11).

Above Tc, superconductivity resistivity has the form of normal metals, described by ρ(T ) =

ρ0 +BT 5, in which the constant term arises from impurity and defect scattering, and the term in T 5

arises from phonon scattering. Below Tc, resistivity drops abruptly to zero and current can flow in a

superconductor with no discernible dissipation of energy. However, if the current exceeds a critical

value, the superconducting state will be destroyed (Silsbee effect). The size of this critical current

also depends on the material nature and geometry of the specimen, and related to whether the

magnetic field produced by the current exceeds the critical field at the surface of superconductor.

A superconductor well below its transition temperature will also respond without dissipation to an

AC electric field provided that the frequency is not too large above the SC correlation energy gap

∆/h̄.

Electron gas model predicts that good electrical conductors are also good conductors of heat,

since conduction electrons transport entropy as well as electric charge. Superconductors, contrary

to this, are poor thermal conductors, indicating that those electrons in the persistent current carry

no entropy.

For traditional superconductors, metal to superconductivity transition establishes an energy

gap ∆ at orders of kTc, between ground state and quasi-particle excitation of the system. However,
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this energy gap is different from band gap formed by periodic crystal structure. The origin of this

superconducting gap ∆ are explained by BCS theory of superconductor.

2.6.2 London equation

F. London and H. London first proposed a quantitative way to explain the fundamental fact

that a metal in superconducting state permits no magnetic field in its interior. First we write the

equation for acceleration of superconducting current density Js in presence of an external field E

as:

d

dt

m

Nse2
Js = E (2.54)

where Ns is the superfluid particle density, which can be taken as equal to the particle density in

the normal state N, assuming all carriers condensed into Cooper pairs. In addition, using Maxwell’s

equation, this relation can be written as:

d

dt
(∇× m

Nse2
Js +

B

c
) = 0 (2.55)

Flux expulsion, or Meissner effect, is accounted for by assuming not only the time derivative in the

precious equation, but the function in bracket itself is zero ∇× m
Nse2

Js + B
c = 0. With Maxwell’s

equation B = ∇×A, this expression reduces to:

Js = − m

Nse2
A (2.56)

Using Maxwell’s equation ∇×B = 4π
c Js, we can obtain the magnetic field B as:

∇2B =
4πNse

2

mc2
B =

B

λ2
L

(2.57)

with London penetration depth defined by:

λL = (
mc2

4πNse2
)1/2 =

c

ωp
(2.58)

where ωp is plasma frequency. As this equation describes the spatial variation of B, λL characterizes

the exponential decay of the electromagnetic field. For normal metals, ski depth δ0 is inversely

proportional to ω−1/2, while London penetration depth is frequency independent. Temperature
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dependence of λL follows the condensate density Ns(T ). For time-varying fields, Eq. 2.55 gives

1/ω dependence of imaginary part of conductivity as:

σ2(ω) =
Nse

2

mω
==

c2

4πλLω
(2.59)

Through Kramers-Kronig relation, the real part of the conductivity is given by:

σ1(ω) =
π

2

Nse
2

m
δ(0) =

c2

8λ2
L

δ(ω = 0) (2.60)

2.6.3 BCS theory of superconductivity

The most successful theory to explain superconductivity is proposed by Bardeen, Cooper and

Schrieffer in 1957, which is called BCS theory in short. The key idea of superconductivity is electron

pair condensation. Below certain critical Tc, two electrons with opposite momentum and spin are

coupled and form a cooper pairs under phonon mediated-attractive potential. This weak attraction

leads to a ground state separated from excited states by an energy gap ∆. However, Fermi sea is

not stable to electron pair, and Cooper pairs condense into a single macroscopic quantum state

without dissipation at DC.

The penetration depth and coherence length emerge as natural consequences of the BCS theory.

The London equation is obtained from magnetic fields that vary slowly in space. Thus the central

phenomenon in superconductivity, the Meissner effect, is obtained in a natural way. Supercon-

ducting transition temperature Tc can be obtained by the material characteristic electron-lattice

attractive interaction potential U and electron density of orbitals D(εF ) of one spin at Fermi level.

Magnetic flux through a superconducting ring is quantized and effective unit of charge 2e rather

than e, as a consequence of electron paring. The quantum signature of superconductivity, Josephson

junction, is also well explained by this theory.

2.6.4 Electrodynamics of superconducting state

There are several different length scales which play important roles and their relative magnitude

determines the nature of superconducting state, and also the response to electromagnetic fields (13).
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The first scale is London penetration depth:

λL =
c

ωp
(2.61)

determined through plasma frequency ωp by the parameters of metallic state and derived from

Meissner effect. The second length scale is the correlation length:

ξ =
h̄vF
π∆

(2.62)

describing, crudely speaking the spatial extension of Cooper pairs at 0K. Here the vF is Fermi

velocity and ∆ is SC order parameter. The third length scale is the mean free path of uncondensed

electrons:

l = vF τ (2.63)

set by the impurities and lattice imperfections at low temperature. τ is the time between two

scattering events. Depending on the relative magnitude of their ratios, various types of supercon-

ductors are observed. The local limit is where l << ξ, λ. More commonly it is referred to as the

dirty limit l/ξ → 0. In the opposite, so-called clean limit is when l/ξ → ∞. It is also necessary

to distinguish the following two cases: Pippard or anomalous limit, defined by λ << ξ, l (Type I

superconductor), and the London limit for which ξ << λ, l (Type II superconductor).

The spectral weight associated with excitation is conserved by going from normal to broken

symmetry states. While we have to integrate the real part of the normal state conductivity spectrum

σn1 (ω), in the superconducting phase there are two contributions: one from collective mode of the

Cooper pairs σcoll1 (ω), and one from the single σsp1 (ω):∫ +∞

−∞
[σcoll1 (ω) + σsp1 (ω)]dω =

∫ +∞

−∞
σn1 (ω)dω =

π

2

Ne2

m
(2.64)

assuming that all the normal carriers condense. Because of the difference in coherence factors for the

superconducting and density wave ground states, the conservation of spectral weight has different

consequences. Spectral weight A is removed from integral upon going through superconducting

transition: ∫ +∞

−∞
[σn1 (ω)− σs1(ω)]dω = A

Ne2

m
(2.65)
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where σn1 (ω) and σs1(ω) are conductivity spectra at normal and superconducting state. Comparing

Eq 2.58 and Eq 2.59 leads to:

λ =
c√
8A

(2.66)

connecting the penetration depth λ to the missing spectral weight A. This relationship is expected

to hold also at finite temperatures and for various values of the mean free path and coherence length

– as long as the arguments leading to the transition rate apply. In the limit of long relaxation time

τ , the entire Drude spectral weight of normal carriers collapses in the collective mode, giving

σ1(ω = 0) =
πNse

2

2m
δ(ω = 0) (2.67)

2.6.5 Introduction to Anderson pseudo spin formalism

In BCS ground state, two electrons +k ↑ and −k ↓ form a cooper pair (+k ↑,−k ↓), whose

ground state wave function can be expressed in Anderson pseudo spin formalism:

|ΨBCS〉 =
∏
k

(uk |00〉k + vk |11〉k (2.68)

where |11〉k and |00〉k stands for Anderson pseudo spin up and down. And BCS Hamiltonian as:

HBCS = 2
∑
k

~bk · ~σk (2.69)

where ~σk = (σxk , σ
y
k , σ

z
k) is the Anderson pseudo spin and ~bk = (−∆′,−∆”, εk) is the pseudo magnetic

field whose z component is band dispersion measured from Fermi energy. Then complex order

parameter of superconductor is:

∆ = ∆′ + ∆” = U
∑
k

(σxk + σyk) (2.70)

where U is the pairing interaction potential.

In equilibrium, pseudo spin at each k is aligned along pseudo magnetic field direction. Time

evolution of pseudo spin is described by Bloch equation:

∂

∂t
~σk = 2~bk × ~σk (2.71)
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So order parameter dynamics can be represented by motion of pseudo spin. For spatially ho-

mogeneous monochromatic electro magnetic wave E exp(iωt) applied on superconductor, the z

component of ~bk in the nonlinear regime is:

εk−eA(t) + εk−eA(t)

2
= εk +

e2

2

∑
i,j

∂2εk
∂ki∂kj

Ai(t)Aj(t) +O(A4)

= εk −
e2

2

∑
i,j

∂2εk
∂ki∂kj

Ei(t)Ej(t)

ω2
+O(E4)

(2.72)

which has additional frequency components at 2ω and 4ω. Accordingly, pseudo spin, or order

parameter, is oscillating at 2ω and 4ω under such magnetic field.
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CHAPTER 3. TERAHERTZ LIGHT-QUANTUM-TUNING OF A

METASTABLE CORRELATED PHASE HIDDEN BY

SUPERCONDUCTIVITY

3.1 Introduction

“Sudden” quantum quench and prethermalization have emerged as a cross-cutting theme for

discovering emergent states of matter, such as quantum criticality and generalized Gibbs ensembles

of cold atoms, quark-gluon plasmas, or metastable phases in the early universe (14; 15; 16). Yet

this remains challenging in electron matter (17; 18; 19; 20; 21), especially superconductors (SC),

despite recent progress (8; 22; 23; 24; 25). The grand open question of what is hidden underneath

the “SC dome” occurring in several quantum materials appears to be universal (26), yet the new,

even thermodynamically forbidden states have been unexplored. Here we reveal a long-lived, hidden

gapless quantum phase of prethermalized quasi-particles following single-cycle, resonant terahertz

quench of the Nb3Sn SC gap above a critical fluence. Its conductivity is characterized by a sharp

coherent peak and a vanishing scattering rate that decreases almost linearly at low frequency, most

pronounced around full depletion of the SC condensate, and is absent for high frequency pump.

Above pump threshold, such quantum behaviors with memory persist as an unusual prethermal-

ization plateau, without relaxation to normal or SC thermal states for order of magnitude longer

than the quasi-particle and energy relaxation times. Switching to this metastable “quantum fluid”

state signals dynamic quench of coupled SC and charge-density-wave-like orders and reveals a more

complex organization principle beneath SC.

Exotic states in correlated materials have been discovered by using traditional tuning methods

such as chemical substitution and applied pressure or magnetic fields. These methods correspond to

slow changes of parameters g in the Hamiltonian H(g) and mostly access states of thermodynamic

equilibrium, as illustrated in Figure 3.1a. The availability of single-cycle, intense terahertz (THz)
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pulses (red arrow) now opens fascinating possibilities for non-thermal and non-adiabatic quench of

Hamiltonians, in analogy to “parameter quenches” below megahertz frequency scales in ultracold

atoms. During post-quench, pre-thermalization time evolution, the system can reach persisting,

quasi-steady plateau states far-from-equilibrium. Such states are inaccessible to adiabatic tuning

and optical pumping methods. In the latter case, the induced heating and dissipation couple excited

quasi-particles with, e.g., thermal baths of hot phonons. When applied to correlated materials

with competing orders, THz quench of the dominant SC phase without heating of other degrees

of freedom allows to investigate the possibility of obtaining new pre-thermalized quantum states

and preempted “hidden” orders beneath SC. The latter have not yet been observed despite recent

exciting observations in THz–driven dynamics, e.g., collective modes (22; 23) excited by relatively

weak SC quench and light-enhanced SC in cuprates (24; 25). Strong THz SC quench, one order of

magnitude higher than in Ref. (8; 22; 23) is desired for driving phase transitions (4; 27) which have

been scarce so far in SC materials. Prior studies indicate photoinduced, spatially inhomogeneous

SC/metallic phases due to, e.g., dirty limit samples and below–threshold THz fields used (8; 28).

3.2 Sample preparation

A nearly single-crystal Nb3Sn film 20nm thick with a critical temperature of Tc ∼16K was

grown by magnetron sputtering on a 1mm Al2O3(100) substrate. It was grown by co-sputtering

of Nb and Sn at high temperatures. Nb and Sn targets were current-regulated at 0.33A and 0.1A

respectively in 3 mtorr of Ar, positioned 15.5cm from the substrate. Base pressure was 9.4× 10−8

mtorr. The 10×10×1mm R-plane sapphire substrate was exposed to a SiC-coated graphite heating

element above, and exposed to Nb and Sn flux from below. Deposited material was heated directly

by the radiation, which largely passed through the sapphire. Film temperature during growth is

estimated at 1020◦C by measuring film temperature on thick films grown under similar conditions.

Temperatures were measured with an optical pyrometer.
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3.3 Static Terahertz Electrodynamics of Superconductor Nb3Sn

Here we present evidence of a quantum-quench, phase transition to a gapless, prethermalization

plateau state |ψPlateau〉 in a Nb3Sn superconductor. Sub-picosecond, single-cycle THz fields up

to 620 kilovolt/cm (Figure 3.1b) non-adiabatically excite quasiparticles (QPs) without excessive

heating, using central frequency h̄ω=4 meV (Figure 3.1c) in the vicinity of twice the QP excitation

gap, 2∆SC ∼5.1 meV at 4.1 K. Such non-thermal depletion of the SC condensate is implemented

on time scales comparable to SC gap fluctuation times h̄/2∆SC ≈0.8ps, which leads to a distinct

THz light-tuned hidden quantum phase in a nearly single-crystal Nb3Sn film of 20nm thick on

1mm Al2O3(100) substrate. The sample exhibits a SC transition at Tc ∼16 K and an electronic

instability or martensitic transition around TM ∼47 K (supplementary). This has been attributed

to optical phonon condensation (“dimerization” of Nb atoms) (29), possibly driven by a Van Hove

singularity-like electronic density-of-states and by strong electron-phonon interaction (33; 30; 34; 32;

31; 35) The equilibrium frequency-dependent complex conductivities σ1(ω, T ) and σ2(ω, T ) measure

the dissipative and inductive responses respectively, Figure 3.1d and 1e. Specifically, the equilibrium

4.1 K traces exhibit a large, 1/ω response in σ2 from the SC condensate and zero conductivity in

σ1 below 2∆SC . These change in the normal state, 16 K traces, in both σ2(ω), which gradually

decreases at low frequency, and in σ1(ω), which shows no gap. The above behaviors also show that

our sample is much cleaner compared to those in prior THz studies (8; 28) (supplementary).

3.4 Terahertz Induced Hidden Phase in Pump-probe Measurement

We characterize the nonequilibrium post-quench states by measuring the complex conductivity

(σ1(ω,∆tpp), σ2(ω,∆tpp)) as a function of pump-probe delay ∆tpp, shown in Figure 3.1f. This

is obtained by first constructing a two-time THz pump and THz probe map of the induced THz

probe field transmission through the excited sample, ∆E(tgate,∆tpp), by scanning both gating

pulse delay tgate and ∆tpp. The top panel of Figure 3.1f shows an example of raw data at 4.1K

for ETHz =120 kV/cm. The time-dependent dielectric response functions are then retrieved at

each ∆tpp via Fourier transformation along the tgate axis (methods and supplementary). The low
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frequency spectra ∆σ2(ω) = ∆nse
2/mω reflect the pump-induced change in superfluid density

∆ns/ns (solid circle). The peak of the differential THz field change ∆E/E0 (inset, red line),

normalized by the transmission through the unexcited sample E0 (black line), closely follows the

above-obtained ∆ns/ns, in both dynamics and magnitude. This indicates that the ∆E/E0, under

this condition, originates from condensate quench and recovery.

Figure 3.2 demonstrates distinct post-quench states and two regimes by tuning, via ETHz, the

“distance” from the equilibrium SC state |ψSC〉. The red arrows in Figure 3.2a mark (1) a partial

quench regime at fields E#1−#3 =47, 120 and 155 kV/cm, respectively; (2) a full quench regime

at E#4−#6 =256, 446 and 620 kV/cm, respectively, at T=4.1K. We see a clear suppression of ns

with nonlinear dependence on the quench field, demonstrated by the ∆E/E0 at ∆tpp =12ps long

after the pump pulse is gone. Figure 3.2b corroborates this conclusion: the 1/ω divergence in

σ2(ω,∆tpp) (solid circles, lower panel) gradually decreases in the first regime, and disappears in the

second regime indicative of a full depletion of the SC condensate. Non-thermal QP populations have

been predicted to induce a first-order SC to normal state phase transition in BCS superconductors

(36). Quantum quenching of the BCS pairing interaction also induces a non-thermal transition

to a gapless coherent state (16). While the latter differs from the normal state, the two have

indistinguishable THz conductivities (37). In our experiment, we observe a distinctly different non-

equilibrium σ1(ω) (Figure 3.2b, upper panel) of post-quench states (solid circles) which display,

remarkably, coherent QP transport manifesting as a sharp increase towards zero frequency and

larger integrated spectral weight, by ∼10%, near EF (1-10 meV). Note that σ2(ω) (lower panel)

nearly coincide with those of equilibrium thermal states at various temperatures (gray diamonds),

except for a sharp upturn at very low frequency, most pronounced for E#4−#6 marked by the

arrows. The σ2 cusp clearly cannot be accounted for by the residual condensate seen, e.g., in the

E#4 vs. 15K trace. Rather, it correlates with the sharp σ1 peak as dictated by the Kramers-

Kronig relation. Most strikingly, the coherent peak and the additional spectral weight in σ1(ω)

persist into the full SC quench regime at E#4−#6 (solid blue, red and purple circles). Moreover,

as shown in Figure 3.2c, they disappear for 35fs pump pulses at 1.55 eV (at threshold fluence
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4µJ/cm2, black lines), unlike (38; 21), or when quenching above Tc (620kV/cm and T=18K, red

lines). These features are also clearly distinct from observations of an inhomogeneous SC state

(Figure A3, supplementary) and the predictions of the above standard BCS quench model (16; 37).

This shows that the observed, THz light-tuned quantum phase is unique and cannot be accessed

by any other tuning methods above.

The sharp peak in the conductivity in Figure 3.2b indicates a narrow linewidth proportional

to the effective scattering rate 1/τ(ω), i.e., the imaginary part of the self–energy Σ2(ω) (Figure

A4-A5, supplementary). A remarkable feature is seen in Figure 3.2d: 1/τ(ω) decreases towards

zero almost linearly with ω at ω →0, at the expense of scattering above 2∆SC . This is seen

for both full (E#5, red solid circle) and partial (E#2, yellow green solid circle) SC quench. In

comparison, Figure 3.2e shows that, in equilibrium, 1/τ(ω) at T > Tc (18K, gray circles) remains

fairly constant and converges to the elastic impurity scattering 1/τimp ∼7.7 meV∼ 2∆SC , while for

T < Tc the 1/τ(ω) spectra clearly reveal zero scattering below 2∆SC . Following THz quantum

quench, vanishing 1/τ(ω) at ω →0 is significantly lower than the 1/τimp, smallest scattering rate

in the gapless normal state. Therefore we conclude that the THz light-quantum-tuning scheme

reveals the emergence of a gapless, non-Fermi-liquid “quantum fluid”.

Figure 3.3 reveals a photoexcitation threshold for relaxation slowdown, i.e., prethermalized

plateau temporal behavior, at Eth ∼256 kV/cm, corresponding to a transition to the persist-

ing |ψPlateau〉 phase. This is clearly seen in the detailed pump–fluence–dependence of ∆E/E0 as

a function of time delay, shown here on a logarithmic scale at T=4.1 K. At low quench field,

ETHz < Eth, we observe a smooth, ps condensate recovery with a relaxation time τ fast ∼0.6ns.

This is typical for SC recovery due to QP decay, as seen, e.g., in the 27 kV/cm (magenta line) and

120 kV/cm (purple line) traces in Figure 3.3a. This is corroborated by the detailed time evolution

of ∆σ2 up to 1000 ps (inset) shown for E#2. In contrast, at high quench fields ETHz > Eth, a

much longer many-ns quasi-steady temporal regime emerges and dominates the out–of–equilibrium

dynamics. This is witnessed, e.g., by an order of magnitude longer relaxation time τ slow ∼7 ns in

the 445 kV/cm (red line) and 620kV/cm (black line) traces. The post-quench, non–equilibrium
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σ2(ω) (Figure 3.3c) completely loses the 1/ω divergence already at ∆tpp = 12 ps (black) compared

to ∆tpp=-10ps (gray). The emergent gapless state persists at very long time delays, e.g., 500ps

(red) and 1000ps (blue), with very little recovery to the initial SC state (inset). Note that σ1(ω)

of the gapless quantum state still displays the coherent peak (Figure 3.2b) distinct from the nor-

mal states. In addition, the dynamics are markedly faster above Tc. For normal state quench at

620 kV/cm and T=18K, σ2(ω) has mostly recovered to its ground state behavior in the 1000 ps

trace in Figure 3.3d, consistent with a short ∆E/E0 decay constant ∼0.6 ns (inset). This energy

relaxation τ th is comparable to the thermalization time observed for optical pump (Figure 3.2c).

Figure 3.3b illustrates the characteristic timescales extracted from the above experimental data

and distinguishes their different physical origins. Clearly, both the energy relaxation and QP decay

times are much shorter than the lifetime of the prethermalized plateau state.

To highlight the correlation physics in the gapless |ψPlateau〉, we compare in Figure 3e the 1/τ(ω)

at T = 4.1 K (solid red circles) vs. T = 18 K (gray circles) for various time delays ∆tpp=12 ps,

500 ps and 1000 ps, at E#6=620 kV/cm. Interestingly, besides their different ω dependence

discussed above, the 1/τ(ω) spectra of these post-quench states exhibit a sharp isosbestic point at

a frequency ωc ∼ 2∆SC . This frequency marks the crossing from suppressed to enhanced scattering

and exhibits very little shift for a wide range of time delays measured up to 1000 ps (vertical

dashed line). The formation of an isosbestic point as function of time delay represents a hallmark

for correlated state build-up and signifies a memory of hidden correlation gaps that manifests as

transient spectral weight transfer from higher to lower frequencies. Such a salient feature in the

prethermalization plateau state underpins a very weak time dependence of spectral redistribution,

e.g., the 1000 ps 1/τ(ω) spectra retain memory of a nearly linear frequency dependence and the

emergent correlation gap with no apparent relaxation to either normal (gray circles) or initial SC

state behavior (gray rectangles) (lower panel). This is in contrast to the 18 K quench, which lead

to largely frequency-independent 1/τ(ω) (Figure 3.3e), always larger than the impurity scattering

1/τimp, and to full relaxation before 1000 ps.
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3.5 Theoretical Simulation of Hidden Phase

The observation of additional spectral weight near EF in the hidden |ψPlateau〉, as compared

to the normal state (Figure 3.2b), indicates that the condensate nsδ(ω) at ω = 0 did not come

exclusively from spectral weight at ω ≤ 2∆SC but also involved a larger competing gap ∆W > ∆SC .

Ref. (30) introduced a mean field model to predict the coexistence of a charge-density-wave (CDW)-

like order and SC in the ground state of Nb3Sn, which is driven by strong electron-phonon coupling.

This coexistence results in a correlation energy gap that varies between different regions in k-

space (30). Here we use this model to demonstrate the emergence of additional gapless excitations

following decrease of ∆W (t) that accompanies THz quench of ∆SC(t). A σ1 peak at low frequencies

is then formed by transferring spectral weight from higher frequencies (supplementary). Even a

relatively small (∼10%) laser–induced decrease from equilibrium of ∆W (t) in a low–T transient

state with ∆SC = 0 leads to a coherent peak in σ1(ω), Figure 3.4a-4c, and a partially–gapped

Fermi surface with regions of gapless excitations (shaded area), Figure 4d-4f. For example, for

∆W(t) = 0.8 ∆W,0 (Figure 3.4c) and 0.9 ∆W,0 (Figure 3.4b), σ1 develops a sharp peak at low

frequencies (Figure 3.4e-4f) that is absent for the equilibrium ∆W,0 ∼ 40meV (32) (Figure 3.4d).

The emergence of such peak when (∆W (t) < ∆W,0, ∆SC(t)=0) in a transient state is consistent with

our experimental observation (Figure 3.2b). This calculation suggests that our observed additional

spectral weight and low-frequency coherent peak could arise from a THz-quench-induced decrease

in a competing order parameter. The latter accompanies the quench of the SC gap, beyond the

thermodynamic restriction, and changes the partial k–dependent Fermi surface gapping (Figure

3.4a-4c). .

A THz ultrafast quench of low energy ∆SC with simultaneous decrease in high energy ∆W

can arise from coherent/nonthermal quench dynamics (green circles, Figure 3b) due to, e.g., THz

excitation of short duration (to be discussed elsewhere). Over timescales longer than relaxation

due to inelastic scattering, the above ultrafast k-dependent change of the electronic correlation gap

creates a nonthermal “initial condition” that can access different regions of the free energy landscape

(39). To illustrate how a long-lived prethermalized state may emerge and get trapped for a long
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time after the coherent temporal regime (Figure 3.3b), a simple free energy calculation based on

the mean–field model of Ref.(30) (methods), shown in Figs. 3.4g–4i, compares the dependence on

∆W for three cases: (1) ∆SC = ∆SC,4K (Figure 3.4g) as in the equilibrium state below Tc. The free

energy minimum is then located at ∆W = ∆W,0 and corresponds to an equilibrium homogeneous

phase characterized by a two–component k-dependent order parameter (30). (2) ∆SC,18K = 0

(Figure 3.4h) describes the thermal normal state showing an increase in the equilibrium ∆W (red

dash line) due to the reduction of the competing SC order. (30). We expect such landscape

following quenching of ∆SC via high energy, optical pumping (Figure 3.2c). (3) ∆SC = 0 while

T (t) < Tc (Figure 3.4i), achieved via nonthermal THz light–induced dynamics, changes the free–

energy landscape, e.g. from Figure 3.4g to Figure 3.4i that differs from the thermal normal state

(Figure 3.4h). Within the model of Ref. (30) (methods), a sharp local minimum then develops at

∆W ∼ 0 (blue arrow), which as seen in Figure 3.4f is accompanied by a sharp peak in σ1(ω → 0).

Additional couplings to acoustic phonons (29; 33) and the details of the bandstructure influence such

metastable states with reduced lattice distortion/dimerization (35). The THz-laser-quantum tuning

“suddenly” brings the system in an excited state with ∆SC=0 and initiates coherent/anharmonic

motion of ∆W (t) that can access such free energy local minima for sufficient pump fluence and then

get trapped there due to damping of the coherent motion prior to returning to the global minimum.

Such simultaneously suppressed ∆W and SC order parameters, going beyond the thermodynamic

self-consistency limitation (30), is consistent with our observation of a long–lived (metastable) phase

above threshold. THz light-quantum-quench and prethermalization of competing orders revealed

may be extended to access hidden density-wave phases and quantum criticality under the SC dome

in High–Tc materials.
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Figure 3.1 (a) Schematic of out-of-equilibrium quantum tuning scheme, via non-thermal

quenching of the SC order |ψSC〉, for discovery of a hidden phase marked as

|ψB−phase〉. (b) A typical, single–cycle THz quench electric field in time do-

main. (c): Quench field spectrum (shaded black) with central frequency well

within the 2∆SC gap shown by σ1(ω) (gray diamond) at 4.1K. σ1(ω) at zero

frequency is marked by red arrow and is proportional to superfluid density ns.

The complex conductivity is shown as (d) σ2(ω), (e) σ1(ω). Insets: (d) ns and

(e) 2D false color plot of static transmission spectrum overlaid by extracted

∆SC gap at different temperatures. (f) A 2D false color plot of THz pump–in-

duced change, under peak pump field ETHz =120kV/cm, in THz probe E—

field, ∆E(tgate,∆tpp). The normalized temporal profile of ∆E/E0, measured at

tgate = −0.08ps (inset, red line), closely follows the dynamic superfluid density

change ∆ns/ns.
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Figure 3.2 The distinct spectral features of the gapless quantum state differ from both

normal metallic states and thermal behaviors. (a) Nonlinear pump-field de-

pendence of peak-peak probe E-field transmission change −∆E/E0 for fields

up to 620kV/cm. (b) THz response functions, expressed as σ1 and σ2, of the

post-quench states (solid circles) at various pump E fields marked in (a), cor-

responding to partial (E#1−#3) and full (E#4−#6)) SC order quench. Shown

together are the equilibrium responses σ1 at various temperatures from 6K to

18K (gray diamond) that give nearly identical σ2 to the non-equilibrium state,

except the onset of a sharp upturn at very low frequencies, marked by arrows,

consistent with the diverging-like σ1 by the Kramers-Kronig relation. (c): The

post quench state conductivities at initial T=18K above Tc for E#6 pumping

(red line) and at T=4.1K below Tc but for optical pumping at 1.55 eV (black

line). (d): Frequency-dependent scattering rate 1/τ(ω) for the post-quench

states pumped by E#2 and E#5 compared to the normal state result that con-

verges to 1/τimp (gray circle). (e): 1/τ(ω) for the equilibrium SC (4.1K) and

normal (18K) states as marked.
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Figure 3.3 The persisting, prethermalized plateau state with non-thermal characteristics

and long-lived memory. (a) Temporal dynamics of −∆E/E0 at different quench

field ETHz shows a clear transition between two different decay profiles, marked

as τ fast and τ slow at the threshold field Eth. Inset: THz response σ2 as a func-

tion of time delay, with representative traces for time delays ∆tpp= -10ps, 12ps,

500ps, 1ns at ETHz =120kV/cm at 4.1K. (b):An illustration of the character-

istic timescales extracted from the data in (a)-(d) which range from SC or-

der parameter coherence (green), QP decay (black) and thermalization (blue)

to post-quench prethermalization above the threshold (red). (c): σ2 of the

post-quench state for various time delays ∆tpp= -10ps, 12ps, 500ps, 1ns at

ETHz=620kV/cm at 4.1K. Inset: −∆E/E0 dynamics. (d): The same spec-

tral-temporal characteristics as (b) but for the normal state at 18K. (e): A

comparison of 1/τ(ω) corresponding to (b) and (c) at the given time delays.

Shown together is the final SC state after relaxation (gray square).
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Figure 3.4 Predictions of theoretical model for the hidden gapless quantum state with ex-

traordinary conductivity. (a–f) Simulation of the conductivity (a-c) and Fermi

surface (d-f) with the reduced gap ∆W as discussed in the main text. A and

D: ∆W /∆W,0=1; B and E: 0.9; C and F: 0.8. Red and black dash lines illus-

trate the e and h pockets. Blue shaded areas highlight the regions of gapless

excitations. (g–i) Free–energy density for the model Hamiltonian (supplemen-

tary) as function of the CDW-like order parameter ∆W. (g) ∆SC = ∆SC,4K

for equilibrium state below Tc; (h) ∆SC,18K = 0 describes the thermal normal

state showing an increase in the equilibrium ∆W (red dash line); (i) ∆SC = 0

while T (t) < Tc describes a pre-thermalized gapless state following THz quench

of the SC gap with minimal heating that cannot be realized in equilibrium.
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CHAPTER 4. TERAHERTZ ELECTRODYNAMICS OF COEXISTING

ORDERS AND ULTRAFAST QUANTUM ENERGY TRANSFER IN Nb3Sn

SUPERCONDUCTOR

In this chapter, we compare the equilibrium and optically induced THz electrodynamics of a

moderately clean Nb3Sn superconductor (SC) to understand and control the THz conductivity from

co-existing electronic orders. For high frequency pump, we observe an photo-induced enhancement

in the quasi–particle (QP) conductivity, which persists up to an additional critical temperature,

well above the SC transition, with a corresponding electronic gap and absent for low frequency

pump. In the SC state, the fluence dependence of Cooper pair breaking, together with an analytic

model, reveals, remarkably, a “one photon–to–one pair” non-resonant energy transfer despite the

large energy mismatch, i.e., the rest of photon energy transferring to phonons rather than creating

additional QPs. Such a quantum limit energy transfer to QPs, which we attribute in part to strong

electron–phonon coupling, is at least one order of magnitude smaller than in previously studied

SCs.

4.1 Introduction

The competition and interference between SC and other co-existing electronic instabilities ap-

pears to be universal in quantum materials and controls ordering tendencies, possibly at ultrafast

time scales. How to exploit these co-existing orders as a control knob to understand and achieve ul-

trafast manipulation of materials properties is an outstanding challenge. Answering these questions

has been proved difficult not only in the more sophisticated quantum materials (17; 19; 46) but

also in some well-established systems such as A15 superconductors (30; 47; 33; 34; 48; 49). Nb3Sn,

as a paradigmatic example, exhibits an electronic instability or martensitic transition above a su-

perconducting one, which has been described to optical phonon condensation (“dimerization” of
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Nb atoms) (29), possibly driven by a Van Hove singularity (VHS)-like electronic density-of-states

peaked at ∼EF and by strong electron-phonon interaction (33; 30; 34; 32; 50; 48). Consequently, the

order parameters competing with SC likely exhibit multiple components, both lattice and electronic,

whose exact origin is still debated, e.g., from the apparent splitting of the three-fold degenerate

Γ12 band to an additional electronic or charge-density-wave(CDW)-like contribution seen in tun-

neling (32; 51; 49) and Raman spectroscopy experiments (52). Independent of its precise origin,

the associated, partial Fermi surface gapping, ∆W � ∆SC below the martensitic anomaly affects

the electronic states near EF differently from the SC one (30) and, thereby, opens an unexplored

opportunity for ultrafast manipulation of THz conductivity in A15 compounds.

THz spectroscopy is a powerful tool for quantitative studies of SC states both in– and out–

of–equilibrium. Arising from energy scales in the vicinity of SC gaps ∆SC of few meV, THz

electrodynamics, characterized by the complex optical conductivity response function σ̃ = σ1(ω) +

iσ2(ω), is a direct measure of both inductivity of SC condensate and dissipation of QPs. Such THz

measurements allow access to the key properties of the broken symmetry states, including, e.g., the

SC/QP density, SC gap and complex optical self-energy. Prior THz studies of SC samples mostly

revealed “conventional” features consistent with the deep impurity limit, h̄/τimp � 2∆SC (53;

53; 54; 8). In addition, the spectral-temporal dynamics of the order parameters out-of-equilibrium

represent a powerful tool to study the role of correlations and co-existing orders. The time resolution

can follow Cooper pair breaking dynamics while the time-resolved THz spectra can track possible

spectral weight transfer to the Fermi surface from both the condensate peak nsδ(ω) and from any

competing correlation electronic gap ∆W � ∆SC . These salient features have never been studied in

A15 superconductors and the interesting comparisons are absent with prior ultrafast THz dynamics,

e.g., in MgB2 and NbN superconductors, which don’t exhibit co-existing electronic gaps (53; 54; 8)

and in the cuprates, which exhibit much more complex gap structure (55).

In this Letter, we present the equilibrium and optically-induced, ultrafast THz electrodynamics

of a moderately clean Nb3Sn SC with mean free path comparable to the coherence length. We

find that the non-equilibrium THz conductivity after fs optical pump excitation (∼1.55eV) gains
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an additional spectral weight that, strikingly, persists far above the superconducting TC . This

is opposite to the case of a low frequency pump pulse (∼4meV), which gives rise to a reduced

THz conductivity above TC . We interpret the distinction as evidence for softening of a coexisting,

electronic order ∆W below the martensitic transition. Furthermore, we observe a rapid, SC pair

breaking process consistent with strong electron-phonon coupling. This, together with an analytic

model, reveals a remarkable quantum limit of energy transfer, i.e., one high energy photon breaks

only one low energy Cooper pair, with the rest of photon energy transferring to phonons rather than

creating additional QPs. Such minimal transfer of photon energy h̄ω to QPs, 2∆SC/h̄ω=0.33%, is at

least one order of magnitude lower than previously measured in other superconductors (53; 54; 56).

4.2 Method: Optical Pump-THz Probe Ultrafast Spectroscopy

A Nb3Sn film 20nm thick was grown by magnetron sputtering on a 1mm Al2O3(R-plane) sub-

strate by co-sputtering of Nb and Sn at high temperatures. The optical pump and THz probe

spectroscopy technique is implemented by using three pulses (77): optical pump Eop, THz probe

ETHz by optical rectification, and optical gating pulse at time tgate for electro-optic sampling. The

setup was driven by a 1 kHz Ti:Sapphire regenerative amplifier with 35 fs duration at 800 nm center

wavelength. The transmitted electrical field is in the coherent limit, and all multiple reflections at

interfaces have been treated to deconvolve the complex THz conductivity, for both equilibrium and

non-equilibrium states at pump-probe delay ∆tpp.
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4.3 Terahertz Electrodynamics of Superconductivity

The equilibrium time-domain THz transmission field and complex electrodynamic response are

shown in Figs.4.1(a) and 1(b)-1(c), respectively, as a function of temperature. The 4.1 K traces

exhibit a diverging 1/ω response in σ2, arising from reactive SC condensate, and a dissipationless

conductivity, witnessed in σ1 below 2∆SC =5.1 meV. A finite σ1 peak at the lowest frequencies

<3 meV originates from intraband absorption of the thermally excited Bogoliubons. The above

distinct conductivity features diminish when approaching Tc, as seen in the 10-15 K measurements

shown in Figs.4.2(b)-2(c). As seen in the 16 K and 18 K traces, the normal state exhibits a

gradually decreasing σ2(ω) at low frequencies and a Drude spectral shape of σ1(ω) without gap.

The relatively narrow linewidth of σ1(ω) indicates a much smaller impurity scattering rate h̄/τ ∼7

meV than in previous THz studies (53; 54; 8). Our sample shows an order of magnitude larger

ratio l/ξ ∼1 of mean free path over coherence length, determined by πτ∆/h̄ in Nb3Sn, indicative

of a cleaner SC state.

We now extract the optical self energy Σ(ω, T ) using an extended Drude model (57), which

provides information complementary to σ̃(ω) that is more relevant for characterizing impurity scat-

tering and correlation. Figs.4.1(d) and 1(e) present the complex Σ(ω, T ) in terms of the frequency-

dependent momentum scattering rate 1/τ(ω) and mass renormalization m∗(ω)/m0, which relate

to the imaginary and real parts of the self-energy, respectively. We emphasize three key observa-

tions in the SC state. First, the 1/τ(ω) spectra in Fig.4.1(d) clearly reveal the SC gap opening,

which suppresses the scattering rate below 2∆SC and reduces it to zero at 4.1K. Second, sharp

impurity peaks, commonly seen in dirty limit SC samples at 2∆SC (57), are absent in 1/τ(ω) and

replaced by a broad cusp in m∗(ω)/m0 above 2∆SC . Third, m∗(ω)/m0 in the SC state as ω →0

reflects n/ns, i.e., the ratio between the electron density n and the superfluid density ns. Here,

n/ns(4.1K) = m∗(ω = 0, 4.1K)/m0 ∼1.34 indicates that ∼75% of the electrons participate in su-

perfluidity, consistent with the superfluid density ratio (∼70%) obtained from the optical sum rule∫∞
0+(σn1 (ω) − σs1(ω)) dω = π

2
nse2

m . This measured ns/n is ∼6 times larger than in superconducting

Pb (57).
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Fig.4.2 demonstrates a previously-unestablished feature in the non-equilibrium THz dynamics

that underpin a coexisting order in the normal state of Nb3Sn. The measured THz fields are

shown in the time domain in Fig. 4.2(a), including the pump induced change, ∆E(t), after a fixed

pump-probe delay ∆τpp=10 ps (red) and the transmitted field through the unexcited sample, E0(t)

(black). In Fig.4.2(b) we record the photoinduced THz field peak-to-peak amplitude as a function

of temperature from 4K to 70K. Two transitions are visible. As expected in a SC, the photoinduced

signal drops significantly at TC ∼16K. Unlike in a conventional SC however, the signal persists into

the normal state and completely diminishes only at a much higher temperature TM ∼47 K (inset).

Intriguingly, the latter transition in the THz field amplitude coincides with the martensitic anomaly

that has been associated with the structural-electronic instabilities (33; 30; 34; 32; 50; 48; 29).

Fig.4.2(b) reveals its order parameter with a critical temperature TM .

Importantly, the coexisting TM order above SC suggests the possibility to optically control the

low-energy THz conductivity response by tuning the pump between the optical and THz frequency

range with respect to its correlation gap ∆C . We start with the normal state at 18K slightly

above TC . The non-equilibrium σ1(ω) data is shown in Fig. 4.2(c) for 1.55eV (black) and 4meV

(red) pump photon energy. After 1.55eV pump excitation (black), the low frequency conductivity

σ1(ω) gains an additional spectral weight over its equilibrium (no pump) values (gray circles),

which is responsible for the non-vanishing, pump-induced signals ∆ETHz in the normal state below

TM shown in Fig. 4.2(b). This pump-induced enhancement is consistent with softening of the

correlation gap that develops at the TM transition, which can arise from Γ12 phonon condensation

(dimerization) and/or electronic VHSs, by optical excitation with frequency h̄ωop � ∆W . Such

softening gives rise to spectral weight transfer to the Fermi surface from high energies above ∆W .

Intriguingly, by changing the pump photon energy to 4 meV, i.e., h̄ωTHz � ∆W , we observe

pump-reduced instead of pump-enhanced low frequency conductivity (red). This opposite behavior

serves as a clear indication that photoexcitation at sufficiently low frequencies fails to quench the

∆W gap and, instead, heats up the gapless electronic Fermi sea portion and also the lattice via

electron-lattice coupling. Therefore, the observed difference between low and high pump frequencies
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demonstrates control of the transient THz conductivity by pump photoexcitation above (electronic

gap melting) and below (gapless Fermi sea/lattice heating) the correlation gap ∆W . In addition, we

argue that the distinct difference by tuning pump photoexcitation implies the additional electronic

instability of the martensitic anomaly, beyond the structural one. Without such new degree of

freedom below TM , THz heating of QPs would thermalize quickly together with lattice at ∆tpp=10

ps, the measured, pump-probe delay (Fig. 4.2(b)). Such an elevated lattice temperature would also

tend to enhance, instead of reduce, the THz conductivity by reducing the Γ12 band splitting. Note

that this normal state photoexcitation behavior is absent in previously studied NbN and MgB2

that don’t have co-existing electronic gaps (53; 53; 54).

Next we turn our attention to the non-equilibrium cooper pair breaking (CPB) responses in

the superconducting state after fs optical excitation. For h̄ωop >> 2∆SC , CPB processes can be

driven by multiple interactions of the condensate with photoexcited electrons and QPs or with

high frequency phonons (HFPs). Previous works have shown that the majority of the absorbed

photon energy subsequently transfers to the phonon reservoir during the fs excitation and then

continues to deplete the SC condensate (53; 54; 56). Figs. 4.3(a) and 3(b) plot the non-equilibrium

THz conductivity σ1(ω) and σ2(ω) of Nb3Sn, for various fluences of 1.55eV pump photoexcitation

at T=4.1 K. We observe very similar spectral shapes to those seen for various temperatures in

equilibrium (Fig. 4.1). Photo-induced QPs gradually close the SC gap 2∆SC . At the same time, the

low frequency 1/ω divergence in σ2 diminishes with increasing pump fluence Ipump. Both features

disappear simultaneously above 4µJ/cm2. The thermalized gap ∆SC(Ipump) and the superfluid

density ns, readily obtained from our transient THz spectra and shown in Figs. 4.3(c) and 3(d),

quickly diminish as Ipump approaches 4µJ/cm2. An elevated elecron/lattice transient temperature

T∗ established after the pump can be extracted by fitting the data. As shown in the inset, T∗ →Tc

at the quenching fluence ∼4µJ/cm2. Therefore, conductivity at ∆tpp=10 ps for T<TC is consistent

with previous T∗ non-equilibrium superconductivity models (36; 57; 58).
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4.4 Quantum-limit Energy Transfer

Finally, we track the early time evolution prior to the establishment of a T∗ quasi-equilibrium

temperature regime, which results from transient pair breaking pathways due to scattering with

HFPs and hot QPs. The experimentally–observed ultrafast THz signals, which reflect the photoex-

cited QP density n(t), are presented in Fig. 4.4(a) for various pump fluences. They show faster

CPB with increasing pump fluence during the first 4 ps. In order to reveal the microscopic energy

transfer among various reservoirs, we model the CPB kinetics based on the widely used, Rothwarf-

Taylor (RT) model (59) that is extensively discussed in (58). Here the QP and HFP densities, n(t)

and N(t), are described by two coupled differential equations (59; 58; 53; 54). The rise of n(t) in

time originates from the CPB process preceding to the QP relaxation, which can be described by

the analytical expression (58):

n(t) =
β

R
[−1

4
− 1

2τ
+

1

τ

1

1−Kexp(−tβ/τ)
], (4.1)

where K and τ are dimensionless parameters determined by the initial conditions: K = ((τ/2)/(4Rn0/β+

1)−1)/((τ/2)/(4Rn0/β+1)+1))and 1
τ =

√
1/4 + 2R/β(n0 + 2N0). Here, β is the CPB probability

by absorption of HFP and R is the bare QP bi-molecular decay rate. n0 and N0 are the initial QP

and HFP densities immediately after fs photoexcitation. β and R are independent of the fluence

for weak excitations, when n0 is much smaller than the material–dependent value β/R. Fig. 4.4(a)

presents the best fits, which show a very good agreement with the data. The fitting parameters

τ/β and K are extracted as the function of fluence and plotted in Figs. 4.4(b) and (c) respectively.

Further quantitative information can be obtained by plotting τ/β and K versus the absorbed

energy density Ω. Here Ω at Iq=4.02µJ/cm2 is equal to the SC condensate energy U=4757mJ/mol

(60). Denoting the portion of the absorbed energy that initially goes into QP excitation as p, we

have n0=pΩ/∆ and N0=(1-p)Ω/2∆ created by fs photoexcitation. The best fit to the extracted τ/β

and K data, obtained by minimizing the mean-square error (MSE) of the parameter set {p,R, β},

is achieved for p=0.2±0.1%, which gives the values of β−1 = 1.0 ± 0.1 ps and R = 105.5 ± 10 ps−1

unit cell−1. We further plot the MSE of the above fitting as function of p in Fig. 4.4d by only



www.manaraa.com

55

fitting {R, β} for each fixed p. Intriguingly, a strong deviation from the minimum error starts at a

very small p∼0.33% that coincides with 2∆SC/h̄ω, as marked (dashed arrow) in Fig. 4.4(d). The

merely 0.33% portion of absorbed photon energy h̄ω that excites QPs reveals a “quantum” energy

transfer process where one high energy photon, h̄ω=1.55 eV, breaks only one pair, 2∆SC =5.1

meV, with rest of the energy going into exciting phonons during the initial relaxation regime of

the QP cascading process (inset, Fig. 4.4(d)). The good agreement between data and simulations,

seen in Figs. 4.3 and 4.4, validate this claim, which implies that a photoelectron-phonon relaxation

pathway dominates over the photoelectron-SC interactions. This effect is much more pronounced

in Nb3Sn than in other superconductors, where the measured photon energy transfer to QPs is

at least one order of magnitude smaller during the early relaxation times: 0.33% here vs. MgB2

(p∼6%) (53), NbN (p∼9%) (54) and cuprates (p∼10%) (56).

The applicability of the analytic RT model for reaching the above conclusion is well justified

by the following condition satisfied by our data:n0 = pΩ/∆ ' 1× 10−4 � β/R = 1× 10−2, where

β/R =
N(0)2πω3

D
18v∆SC

(58). Here ωD is the phonon cutoff frequency, N(0) is the electronic density of states

per unit cell at the Fermi level and v is the number of atoms per unit cell. We used the values v=8,

∆SC=2.55 meV, N(0)=11.4 states(spin cell eV)−1 (61) and ωD=6.9 THz (62). In addition, the

value of electron-phonon coupling constant λ can be determined from the relation R =
8πvλ∆2

SC

h̄N(0)ω2
D
.

We obtain λ ≈ 2.0, which agrees very well with previous estimates of λ ≈1.8±0.15 (63) and is 2

times larger than in the previously studied NbN. In addition, a much higher phonon-pair scattering

probability β ∼ 1ps−1 seen in Nb3Sn as compared to MgB2 (β=1/15 ps−1) (53) and NbN (β=1/6

ps−1) (54). This conclusion is consistent with our observation of much faster CPB dynamics, Fig.

4.4(a), and a minimal initial energy transfer to QPs (p), Fig. 4.4(d). We attribute the much higher

β to a much larger density of states N(0)/v due to the bandstructure in Nb3Sn (1.425) (61) as

compared to NbN (0.44) (64) and MgB2 (0.23) (65; 66).
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4.5 Summary and Outlook

In summary, the THz electrodynamics of Nb3Sn demonstrate control of the THz conductivity

by tuning pump photoexcitation and provide additional evidence for the presence of an electronic

order below the martensitic anomaly. Our results demonstrate a “one photon–one pair” quantum

energy transfer, much pronounced than previously studied superconductors, which we attribute in

part to strong electron–phonon coupling. This points the opportunity to probe and manipulate

complex materials by harnessing the ultrafast THz electrodynamics of strongly coupled orders.
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Figure 4.1 THz probe transmitted field Eprobe as function of gate delay time tgate for the

thermal equilibrium state from 4K to 20K. (b), (c) Temperature dependence

of imaginary and real parts of the conductivity, σ1(ω) and σ2(ω). Inset to

(b): schematic of Cooper pair breaking. (d) Mass renormalization m∗/m and

(e) momentum scattering rate 1/τ spectra calculated from σ1(ω) and σ2(ω) in

(a), (b). Grey solid line denotes 2∆SC gap at 4.1K. Dashed lines mark the

asymptotic m∗/m and 1/τ towards zero frequency.
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Figure 4.2 (a) Transmitted Eprobe through unpumped Nb3Sn film (gray) and pump in-

duced change ∆Eprobe (red). (b) Temperature dependence of peak-to-peak

∆Eprobe at 4.02µJ/cm2. ∆Eprobe above Tc is magnified in inset to (b) and

critical temperature TM is marked by blue dashed line. (c) σ1(ω) after 1.55eV

(black), 4meV (red) pump photo-excitation compared to equilibrium (gray cir-

cle) at 18K.
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Figure 4.3 (a), (b) Non-equilibrium σ1(ω) and σ2(ω) at pump-probe delay tpp=10ps for

optical-pump fluences 0.05-16µJ/cm2. Inset to (b) shows effective temperature

T∗ at various fluences. (c), (d) Fluence dependence of superfluid density ns and

SC gap ∆SC .
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Figure 4.4 (a) Pump-probe dynamics measured in experiment (dots) and fitted by RT

model (black line). (b), (c) Fluence dependence of RT model parameters K

and ξ/η (black triangle) and fitting curve (red line). (d) Fitting MSE vs. QP

energy absorption percentage p. Inset to (c) shows fluence dependence of pump

induced ∆E fitted by a saturation curve (1− exp(−I/Fs)). Inset to (d) shows

the schematics of microscopic CPB by 1.55eV photon.
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CHAPTER 5. NON-EQUILIBRIUM PAIR BREAKING IN

Ba(Fe1−xCox)2As2 SUPERCONDUCTORS: EVIDENCE FOR FORMATION

OF PHOTO-INDUCED EXCITONIC STATE

Ultrafast THz spectroscopy reveals an unusual out-of-equilibrium Cooper pair dynamics driven

by fs optical quench of superconductivity (SC) in iron pnictides. Following the standard picosecond

SC quench via hot–phonon scattering, a second, abnormally slow (many 100’s of ps), SC quench

regime is observed prior to condensate recovery. This two–step pair breaking dynamics critically

depends on doping and temperature, displays a nonlinear pump fluence dependence, and is observed

in both single crystal and thin film samples with the uniform excitation. Using density matrix

equations of motion, we argue that the build–up of excitonic (e–h) inter–pocket correlation, due

to residual interactions among photoexcited quasiparticles (QP), quenches SC in a correlated QP

state.

5.1 Introduction

Ultrafast optical tailoring of transient quantum states provides a new way to discover, design,

and control exotic correlated materials phases. Recent examples include, among others, quantum

femtosecond magnetism (18) and laser-induced superconductivity (25). This strategic approach

is implemented by non–thermal separation, within a certain time window, of distinct coupled

orders. The latter are strongly intertwined in equilibrium, but respond differently to strong fs

photoexcitation (19; 20). Iron-arsenide based superconductors (FeSCs) (68) are well–suited for

such non–equilibrium control, as their properties are determined by competing SC, spin density

wave (SDW), nematic and structural orders (69). Here we address two open issues: (i) how to

use non-equilibrium SC pairing/pair breaking to distinguish between the two bosonic channels,
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i.e., phonon and magnetic, that determine the SC properties, (ii) how instabilities in two different

correlation channels, i.e., Cooper and excitonic, can lead to controllable transient states.

Ultrafast THz spectroscopy is well–suited for disentangling strongly–coupled excitations. In

SCs, this can be achieved by directly probing out-of-equilibrium Cooper pairs and their dynamics

following strong pump photoexcitation. By tuning the THz probe frequency in the vicinity of the

SC gaps 2∆SC of few meV, low-frequency THz electrodynamics can be used to directly measure

the time evolution of a SC condensate. The latter is “suddenly” driven away from equilibrium,

by fs optical excitation here, as illustrated in Fig.5.1(a). Previous ultrafast studies showed that

the SC dynamic following high-frequency optical pump mostly comes from its interactions with

hot phonons (58; 55). In FeSCs, SDW (e–h) channel (72) in additional to phonons should play an

important role with distinct ultrafast SC dynamics. This has never been observed due in part to

the fact that the dynamics in the SC states has been measured only in the optical high frequency

region (71) and THz dynamics in resonance with the SC gap have been extremely scarce so far.

Photogeneration of non-equilibrium states in quantum materials with competing SC and density

wave orders, such as the FeSCs, provides an opportunity to elucidate the role of e–h channels in

high–Tc superconductivity. In equilibrium, the SDW phase of FeSCs shows a spontaneous coherence

emerging from nested e-like and h-like Fermi sea pockets, with transition to a (0, π)/(π, 0) spin-

striped state (73; 74). Following QP photoexcitation in these e and h pockets, which can melt the

SDW order (72), excitonic correlation can build–up due to the residual inter–pocket interaction

(illustrated in Figure 5.1(b)). Such incoherent dynamics is well–documented in semiconductors,

where dephasing of excitonic polarization or relaxation of photoexcited e–h plasma is followed by

formation of a transient state of correlated e and h QPs (75; 86).

In this letter, we present an ultrafast THz spectroscopy investigation of the non-equilibrium

dynamics of the SC order in Ba(Fe1−xCox)2As2. We find that Cooper pair breaking subsequent

to strong fs optical excitation follows an unusual two-step temporal profile. In particular, the

usual phonon scattering channel (τFast) is distinguished from an additional, suprisingly slow SC

quench (τSlow). This long-lived, pre-bottleneck dynamics lasts for many 100’s of ps under strong



www.manaraa.com

63

pumping prior to SC recovery. The pump fluence dependence of the SC quench differs between the

under- and overdoped regimes with different SDW coherence. Such never-before-seen pair–breaking

dynamics, together with quantum kinetic modeling, provide first evidence for the formation of an

emergent correlated state of QP e–h pairs, out-of-equilibrium, competing with SC, which is driven

by excitonic correlation of the disconnected Fermi sea pockets.

5.2 Sample Preparation and Experiment Setup

The samples are single-crystalline Ba(Fe1−xCox)2As2 with cobalt substitutions of x=0.047 and

0.1. In the underdoped sample (x=0.047), long-range SDW and structural phase transitions appear

at TN=48 K and TS =66 K, respectively (74). These phase transitions are absent in the overdoped

sample (x=0.100). Both samples exhibit a SC transition at TC ∼ 17 K. Our optical pump–THz

probe reflectivity spectroscopy setup is described in detail elsewhere (77; 78; 79). The opaque

sample is mounted at 45o to incident light and cooled to T=4.1 K.

5.3 Non-equilibrium Dynamics of Pair Breaking

We start with the equilibrium THz measurements of the static SC order and energy gap. The

typical static THz reflection spectra, R(T ), of Ba(Fe0.953Co0.047)2As2 are shown in Figure 5.1(c). We

compare temperatures T=4.1 K (red diamonds) and 18 K (black rectangles), below and above the

SC transition respectively. These spectra are obtained through Fourier transform of the measured

time domain THz field traces, e.g., the red-line curve in the inset of Figure 5.1(d). They are

normalized by the normal state 20 K trace. The ratio R(4.1K)/R(20K) in the measured spectral

range of 1–11 meV exhibits the characteristic SC profile. The distinct upward cusp with maximum

at ∼5 meV reflects the SC energy gap 2∆SC . In contrast, R(18K)/R(20K) ∼ 1 has a featureless

spectral shape. The measured spectra are reproduced well by the Mattis-Bardeen (MB) theory. In

the low-ω/T limit, the ratio can be expressed as 1 + 4
√
ω/(πσ1N ), where σ1N is the normal state

conductivity.
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Figure 5.1 Schematics of SC pair breaking channels (a), and interband transitions,

(b), after fs pump photoexcitation. (c): Static THz reflectivity spectra, nor-

malized to the normal state spectra at 20 K, for underdoped x = 0.047 sample,

at 4.1 K and 18 K. Grey line shows the result of the Mattis-Bardeen theory.

(d) Ultrafast THz dynamics for the above underdoped sample. Inset: The

measured time–dependent THz field transients, with gate-time (blue arrow)

tgate=4.4 ps, at T=4.1K.

The ultrafast THz differential reflectivity ∆R/RSC in the underdoped compound is shown in

Figure 5.1(d) for three different temperatures, 4.1 K, 10 K and 17 K. The pump fluence and

photon energy are set to 40 µJ/cm2 and 1.55 eV, respectively. The transient signals are given by

the difference of the time-dependent THz fields in the photo-excited (pump on, back line, inset) and

unexcited (pump off) states (red line, inset). ∆R/RSC is then obtained as [(ETHz + ∆ETHz)
2 −

E2
THz]/E

2
THz. The ∆R/RSC dynamics fixed at tgate = 4.4 ps (blue arrow, inset) is recorded as

function of pump–probe delay. Figure 5.1(d) demonstrates a distinct two-step temporal profile of

pair–breaking dynamics. The initial sub-ps SC gap decrease (τFast) is followed by a further very
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slow decrease that continues for an unusually long time ∼800 ps (τSlow). The strong temperature

dependence in Figure 5.1(d) coincides with the SC transition, i.e., the transient signals quickly

decrease, as seen in the 4.1 K (black) and 10 K traces (red), and diminish at T≈TC ≈ 17 K (blue).
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Figure 5.2 (a) THz differential reflectivity spectra (dots) for the x=0.047 sample at 700 ps.

The cusp peak marked by black arrows reflects 2∆SC . Inset shows the MB

simulation (see text). (b) Temperature–dependent ∆E/E THz transients. Left

panel: ∆E/E transient at 4.1 K. Top panel: temperature dependence of 2∆SC .

(d) Temperature dependence of the integrated spectral weight and peak tran-

sient amplitude.

We now present transient ∆R/RSC spectra that further point to non-equilibrium pair–breaking

as the origin of the pump-induced THz signals. Figure 5.2(a) shows the temperature–dependent

low frequency, ∼1–9 meV, differential reflectivity spectra of the underdoped x = 0.047 sample at

a fixed long time delay of 700 ps. These spectra are obtained from the Fourier transform of the

time-domain THz raw data (Figure 5.2(b)). We note three distinct features: (1) The negative

low frequency change ∆R/RSC <0 indicates photo-induced condensate breaking processes. (2)

These transient spectra exhibit the characteristic SC lineshape with cusp peak at 2∆SC (black
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arrow), which is reproduced well by the MB theory (inset of Figure 5.2(a)). (3) Approaching the

critical temperature from below, ∆R/RSC quickly diminishes as the cusp at 2∆SC shifts to lower

frequencies (black arrows, Figure 5.2(a)). This SC gap temperature dependence is summarized

in the top panel of Figure 5.2(b). We also compared the integrated reflectivity spectral weight

associated with the SC states and the ∆R/RSC amplitude at tgate=4.4 ps. The strong correlation

between the two at all temperatures (Figure 5.2(c)) and fluences (inset, Figure 5.4(b)) allows us to

study the ultrafast pair-breaking dynamics by recording ∆R/RSC as in Figure.5.1(d).

-2.0x10-3
-1.5
-1.0
-0.5
0.0

Δ
R
/R
sc

8006004002000
Time  Delay  (ps)

12  µJ/cm2  

-3x10-3
-2

-1

0

Δ
R
/R
sc

8006004002000
Time  Delay  (ps)

10  µJ/cm2  

-6x10-3
-4

-2

0

Δ
R
/R
sc

  x=0.047 T=  4K

36  µJ/cm2  

-4x10-3
-3
-2
-1
0

Δ
R
/R
sc

78  µJ/cm2  

  x=0.010

-2x10-3
-1

0

Δ
R
/R
sc

840 (ps)

-1.2x10-3
-0.8
-0.4
0.0

(ΔR
/R
)SC

8004000

LuNi2B2C,  
Tc  =  17K

(a)  

(b)  

(c)  

(d)  

Figure 5.3 Ultrafast THz pump probe scan at different pump fluences for (a,b) x=0.047

and (c,d) x=0.1 samples. All traces taken in the superconducting state at

T=4.1 K. Inset of (a): the initial dynamics. Inset of (c): The THz dynamics

in LuNi2B2C at pump fluence of 40 µJ/cm2.

Next we show the strong dependence of the non-equilibrium SC quench profile on pump fluence

and doping. Figure 5.3(a) and 5.3(b) show the photoinduced ∆R/RSC dynamics in the underdoped,

x=0.047, sample and compare 36 µJ/cm2 and 10 µJ/cm2 pumping. Both excitations of the coupled

SC/SDW ground state order show a sub-ps τFast followed by a 100’s ps τSlow SC quench process.

Previous works in BCS and cuprate SCs have shown that the majority of the absorbed photon

energy transfers to the phonon reservoir during the pulse (70). Hot phonons then deplete the

condensate on a few-ps timescale (54; 58). This time interval becomes shorter (sub-ps) under the

strong pumping used here, consistent with the inset of Figure 5.3(a). However, the slow ∼800ps SC
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quench under strong pumping is different from other superconductors. For comparison, the inset

of Figure 5.3(c) shows the non-equilibrium pair breaking dynamics of the BCS superconductor

LuNi2B2C. Unlike for the FeSCs, similar strong pumping of this SC exhibits single-step, sub-ps SC

quenching, followed by slow partial recovery instead of further quench. This typical pair breaking

temporal profile can be explained in terms of QP scattering with high energy phonons, followed

by condensate recovery governed by phonon relaxation (bottleneck effect) (58). A comparison of

the two SC systems indicates that an additional, remarkably slow and yet strong, SC quenching

channel is present in the FeSCs. The continuing SC gap quench over many 100’s of ps is “intrinsic”

and cannot come from, e.g., heat diffusion. The latter would appear in both FeSC and BCS samples

and would also differ between thin film (uniform excitation) and single crystal FeSC samples, which

however show similar pre-bottleneck dynamics (supplementary).

Figures 5.3(c) and (d) show our results in the overdoped FeSC system (x=0.1),where there is

no long-range SDW order in equilibrium. In this regime of the phase diagram, the quench temporal

profile changes drastically with increasing pump fluence. While the slow SC quench is again seen

at high fluences 78 µJ/cm2 (Figure 5.3(c)), at low pump fluences (12 µJ/cm2 in Figure 5.3(d))

the initial fast quench is followed by a partial recovery similar to the BCS sample (inset, Figure

5.3(c)). For the overdoped ground state without any SDW coherence, the slow SC quench channel

only appears above a critical fluence, while in the underdoped regime with SC/SDW ground state

it persists down to low fluences. Such a strong distinction in the temporal profile between sample

dopings corroborates our assertion that the long-lived, continuing SC gap quench is “intrinsic” in

FeSCs and differs from both BCS and cuprate SCs.

5.4 Theory Explanation: Formation of Photo-induced Excitonic State

The striking fluence and doping dependences of the FeSC condensate quench are seen more

clearly in Figure 5.4(a) and 4(b). Here, the integrated spectral weight (SW), obtained from the

peak-peak amplitude change ∆R/RSC at tgate=4.4 ps (inset, Figure 5.4(b)), is shown as function

of pump fluence. Figure 5.4(a) compares the fluence dependence in the overdoped regime (no SDW
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Figure 5.4 Measured fluence dependence of the integrated spectral weight (SW): (a) x=0.1

crystal at 5 ps (red) and 700 ps (black); (b) comparison of x=0.047 and x=0.1

samples at 700 ps. Inset: SW and ∆R/RSC exhibit the same fluence depen-

dence. (c) Theoretical modeling of the SC gap quench in the overdoped region

as function of photoexcited QP density ρ, with (black line) or without (red line)

inter-pocket excitonic correlation.The y-axis is normalized by the equilibrium

SC gap ∆0. (d) Theoretical comparison of under- and over-doped regions for

the photoinduced correlated SDW excitonic state. Inset: Excitonic energy |E|,
Eq. (5.1), as function of ρ.

ground state coherence) between short 5 ps (red empty circle) and long 700 ps (black solid circle)

time delays. The SC quench as function of photocarrier density is qualitatively different at short

and long times and the two curves cross at ∼25 µJ/cm2. At ∆t=700 ps, we observe a transition

from SC to normal state above a large critical pump fluence, Iq=182 µJ/cm2. Such transition is

not observed at 5ps, where the signal appears to saturate for high fluences. Figure 5.4(b) compares

this SC-to-normal state transition at ∆t=700ps between the under- and overdoped samples. In

the underdoped regime with SC/SDW coherence (x=0.047), the transition occurs at much smaller

critical pump fluence ∼ 50 µJ/cm2 than in the overdoped regime. Below we interpret these salient
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experimental features based on build–up of excitonic correlation between the photoexcited e and h

QPs.

The conventional Rotwarth-Taylor (RT) model (58; 59) describing QP interactions with hot

bosons does not provide a consistent fit of our THz time–dependent data (supplementary). This

model assumes that the hot bosons are distinct from the photoexcited QPs. Here, however, the

same indistinguishable electrons participate in SC condensate, QP excitations, and inter–pocket

e-h pairs. The importance of fermionic correlations after coherence has decayed is well established

in semiconductors, where calculations of exciton formation based on rate equations describing e and

h QPs and excitons as distinct particles are inadequate (? ). Using a density matrix calculation of

the QP dynamics arising from the strong inter–pocket interaction, here we describe the build–up of

e–h correlation after any SDW coherence has decayed (supplementary). An uncorrelated “plasma”

state of e–h QPs formed after initial cascade (46) creates hot QP populations of the disconnected

e– and h–like Fermi sea pockets (Figure 5.1(b)) and evolves into a correlated many–QP state

characterized by the two-particle density matrix (? ; 84). Slow formation of excitonic correlation

between QPs is well established in semiconductors (? ).

We adopt the Hamiltonian of Refs. (82; 42), which in the mean-field approximation describes

the essentials of competition between SC and SDW orders. Considering for simplicity one e and

one h pocket, we first transform to the basis of Bogoliubov QPs with equilibrium SC and SDW

coherence. Similar to semiconductors, here we assume an initial hot quasi-thermal distribution of

uncorrelated QPs in both e and h pockets, formed after cascade relaxation (46) whose details are

unimportant. The QP populations np evolve in time due to their residual interactions, which affect

the low energy states. The e–h correlation is characterized by two-particle density matrices of the

form 〈X†X〉 − 〈X†〉〈X〉, where 〈X〉 denotes the one-particle SDW coherence (82; 80). In this way

we characterize the crucial properties of the quasi-stationary many–QP state formed after 100’s of

ps. This many–QP state is intermediate between uncorrelated e–h plasma and spin–exciton many

body state and is characterized by the amplitude φp given by the generalized Wannier equation
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obtained from the equations of motion of 〈X†X〉 − 〈X†〉〈X〉 as in Refs. (84; ? )(supplementary):

(
ε−p + ε+

p

)
φp − (1− 2np)

∑
k

Vk,pφk = E φp . (5.1)

Here, ε−p and ε+
p are the single–QP energies and Vk,p are the matrix elements describing the residual

inter–pocket interaction. The energy eigenvalue E describes corrections to the chemical potential

as correlation builds up between QPs. E depends on the total photoexcited QP density ρ through

the condition ρ =
∑

p np, where the QP distribution np is determined by (supplementary)(
np −

1

2

)2

+ |φp|2 =
1

4
. (5.2)

The above equations, together with SC/SDW order parameter equations (supplementary), provide

a self-consistent calculation of the quasi–stationary correlated many–QP state (85) and are anal-

ogous to the description of incoherent excitonic correlation build–up in semiconductors (? ) and

the transition between Bose condensation and BCS superconductivity (83). Here we describe QP

e–h pair states, whose properties depend on the equilibrium SC and SDW coherence (81). This

introduces a doping dependence that depends on the Fermi sea topology. Equation (5.1) interpo-

lates between weak and strong coupling limits and can have both bound and unbound solutions,

depending on QP density ρ, Pauli blocking effects, and inter–pocket interaction strength. With

increasing ρ, the momentum dependence of the QP distribution np changes strongly due to its

coupling with the QP pair amplitude φp. This, in turn, affects the Pauli blocking effects that

quench the SC gap.

Figure 5.4(c) compares the calculated quasi-stationary SC gap with or without the excitonic

correlation φp as a function of total QP density ρ (supplementary). The calculated SC gap for

φp=0 (red circles), which assumes uncorrelated photoexcited QPs, shows a fast decrease at low QP

densities, which flattens (saturates) as ρ increases further. This feature is in qualitative agreement

with the measured fluence dependence of the SC gap at ps time delays (red circles, Figure 5.4(a)),

where the standard BCS model with quasi–thermal QPs following initial relaxation is applicable

(φp ≈ 0) (40).
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With φp 6=0 developing when the interacting QPs form a metastable quasi–equilibrium state as

indicated by our experiment, the distribution np changes drastically. In this state, our calculations

show that the QP interactions, Eq. (5.1), lead to a complete quench of the SC gap at elevated

ρ (black curve in Figure 5.4(c)), with a non–thermal transition from SC to normal state above a

critical pump fluence. This result is in qualitative agreement with the measured fluence dependence

of the SC gap after 100’s of ps (black circles, Figure 5.4(a)). It supports our claim that the

experimentally observed qualitative difference in the SC gap fluence dependence between long and

short times arises from the delayed formation of a correlated state among interacting laser–induced

non–equilibrium QPs.

Figure 5.4(d) compares the calculated QP density dependence of the SC gap at long times

between the underdoped (blue solid circle) and overdoped (black solid circle) regimes. The doping

dependence of the critical pump fluence required for SC–to–normal state transition is in qualitative

agreement with the experiment (compare to Figure 5.4(b)). While in the overdoped regime there

is no SDW coherence, the equilibrium SDW coherence present in the underdoped regime results

in SC-to-normal state transition at lower photoexcited QP densities. Such doping dependence of

the residual e-h correlations comes from the differences in the coherence between the overdoped

and underdoped equilibrium states. Finally, the inset of Figure 5.4(d) shows the calculated energy

eigenvalue E per e–h pair as a function of QP density ρ. At low ρ, we obtain a bound excitonic

state, which however becomes unbound due to phase-space filling Pauli effects.

In conclusion, the ultrafast THz dynamics of FeSCs reveals a remarkably long-lived pre–bottleneck

dynamics, i.e. a SC quench that continuous after many 100’s of ps prior to SC recovery. Such de-

layed build–up of SC quench is observed in both single–crystal and thin–film samples and, together

with its nonlinear fluence and doping dependence, provide evidence for the existence of a metastable

many–QP state. These salient experimental features and differences between long and short times

are consistent with our quantum kinetic calculation that underpins build–up of such quantum

state due to inter–pocket QP interactions. The nonthermal control demonstrated here may be
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used to access hidden density-wave phases and quantum criticality under the SC dome in high–Tc

superconductors.
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CHAPTER 6. LIGHTWAVE-DRIVEN GAPLESS SUPERCONDUCTIVITY

AND FORBIDDEN QUANTUM BEATS BY TERAHERTZ SYMMETRY

BREAKING

Light-induced supercurrents chart a path forward for electromagnetic design of emergent ma-

terials phases and collective modes for quantum engineering applications. However, controlled

spatial-temporal modulation of the complex order parameter characterizing such non-equilibrium

states remains elusive. Such ultrafast phase-amplitude modulation can manifest via high harmonic

(HH) modes beyond those allowed by equilibrium symmetries. Here we drive moving condensate

states via subcycle dynamical symmetry breaking achieved with nonlinear oscillating photocurrents.

These non-equilibrium macroscopic quantum states with broken inversion symmetry are controlled

via Cooper pair acceleration by asymmetric and multi-cycle terahertz photoexcitations. The ob-

served supercurrent-carrying states evolve during a lightwave cycle and exhibit three distinguishing

features: Anderson pseudo-spin precessions forbidden by equilibrium symmetry, strong HH coher-

ent oscillations assisted by pairing, and long-lived gapless superfluidity with minimal condensate

quench. Lightwave tuning of persistent photocurrents can be extended for quantum control of high-

TC cuprates and topological matter, with implications on quantum gate and sensing functionalities.

6.1 Introduction

Ultrafast nonlinearity in quantum systems is emerging as a frontier for enabling laser-driven

many-body correlation phenomena (14; 89; 22; 23; 88; 40; 87; 67; 25; 28; 78; 104). So far, strong

coupling of superconductors (SC) to intense terahertz (THz) pulses has revealed, e.g., collective

modes (40; 22; 23; 87; 88; 92) and a gapless quasiparticle (QP) metastable phase hidden beneath

SC (67). A standard model for understanding ultrafast SC condensate coupling to an ac electric

field, illustrated in Figure 1a, is Anderson pseudo–spin precession, ~sk(t) (arrows). This precession
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is driven by even nonlinear couplings, O(A2n), of the vector electromagnetic potential A(t), which

are the only ones allowed by the equilibrium BCS symmetry (14; 89; 90; 93). Here we explore a

different nonlinear mechanism, periodic and asymmetric acceleration of Cooper pair center-of-mass

(CM) motion driven by phase-locked multi-cycle THz electric field pulses. We show that experi-

mental manifestations of such lightwave acceleration of a macroscopic quantum state include strong

odd (forbidden) Anderson pseudo–spin HH nonlinearities enabled by subcycle symmetry breaking.

The latter result from transient changes in the pairing for sufficiently strong THz gauge fields cor-

responding to finite Cooper pair center of mass (CM) momentum. This coherent asymmetric THz

field driving of condensate does not rely on resonant excitation of QPs or bandstructure details

(89; 91), but rather on transient breaking of equilibrium inversion symmetry and nonlinear pho-

tocurrents. This is achieved by introducing a preferred direction parallel to the oscillating electric

field, which leads to (k + ps(t) ↑, −k + ps(t) ↓) Cooper pairs, with spatially-temporally modulated

superfluid CM momentum ps(R, t) created during the pulse (Figure 1a, red line), via periodic ac-

celeration of the SC condensate by the oscillating THz field and via spatial variations in the SC

order parameter phase ζ,

ps(R, t) = −2eA(R, t) +∇Rζ(R, t) = 2e

∫ t

−∞
Eeff(R, t′)dt′ (6.1)

where 2e is the Cooper pair charge and Eeff(R, t′) (method, Eq.(3)) is the effective pulse that

drives the light-induced CM motion. Furthermore, such gauge–invariant superfluid momentum

can remain finite long after the pulse since THz driven nonlinear photocurrent sources and spatial

variations determine an effective asymmetric oscillating electric field inside the SC during THz

pulse propagation that satisfies the property
∫∞
−∞ dτ Eeff(τ) 6= 0 (94). Such effective pulse will

drive persistent condensate flow if disorder is minimized in sufficiently clean superconductors.

We emphasize two smoking-gun signatures of the periodically driven, supercurrent-carrying

macroscopic state: (1) As illustrated in Figure 1a, co-existence and interference (white dash ar-

rows) in a pump—probe two-pulse experiment of quantum transport, ps(t) (red lines), with even-

order nonlinearity, O(A2n) (green lines), can result in new forbidden Anderson pseudo-spin modes

due to dynamical symmetry breaking, e.g., coherent pseudo–spin oscillation (PSO) at 3ωpump.
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However, only even-order PSO nonlinearities have been considered so far, limited to O(A2) at

2ωpump observed experimentally corresponding to a perturbative expansion (23); (2) in a moving

condensate, ~vs(t), the SC order parameter ∆SC(t) is no longer equal to the QP excitation energy

EQPmin(t) ≈ ∆SC(t)−pF ·~vs(t). To illustrate this, Figure 1b compares the QP dispersion between the

equilibrium BCS state (left), with finite energy gap 2∆SC , and the current-carrying state (right) at

critical Cooper pair velocity, ~vs · pF = ∆SC . The latter state is gapless at k points with vanishing

EQPmin, i.e. it costs zero energy to excite QPs, although the order parameter ∆SC(t) and superfluid

density ns(t) remain finite. A supercurrent-carrying gapless state is difficult to realize in equilib-

rium, due in part to heating of electric contacts in the presence of the large current and impurity

scattering. Although the equilibrium gapless state has been inferred in tunneling spectroscopy

of DC-biased SC nano-wires (95) and also induced as a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)

state, coherent tuning of gapless superfluidity (44) is difficult by using these equilibrium methods.

Here it is achieved by nonlinear lightwave acceleration of supercurrents (Figure 1a).

In this article, we drive a nonthermal transition from the equilibrium BCS state to a long-

lived, supercurrent–carrying macroscopic state in a sufficiently clean Nb3Sn. This is achieved by

non-contact alternating current-bias using the sub-gap THz carrier wave of the light electric field

(67; 78). The subcycle dynamical symmetry breaking manifests itself via the emergence of forbidden

3rd-order PSOs, interaction-enhanced strong 4th-order HH nonlinearities, and light–induced gapless

superconductivity. Our results are consistent with the predictions of a quantum kinetic nonlinear

calculation using a gauge–invariant density matrix.

Forbidden Anderson pseudo–spin and strong HH oscillations

The pseudo–spin oscillations measured in a Nb3Sn film (97) (methods) are shown in Figure

1c. The SC state is driven by a ETHz =11.5 kV/cm sub-gap THz field with central frequency

ωpump =0.5 THz (2.1 meV), well below the pair-breaking gap 2∆SC =1.2 THz at 4.1 K. It is

detected in a two-time, THz pump and THz probe experiment, by measuring the differential THz

transmission ∆E/E0 as function of pump–probe time delay. The coherent dynamics reveals a
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pronounced quantum beating superimposed on a slow amplitude change, which vanishes above

the critical temperature Tc ∼16 K (inset). The origin of the oscillatory behavior of ∆E/E0 is

demonstrated by its Fourier transformation shown in Figure 1d. Besides the conventional 2ωpump

mode (same as third harmonic generation, THG, in emission (23; 14), shown in supplementary),

the spectrum displays three new strong peaks: (i) an inversion symmetry–forbidden, 3rd harmonic

PSO mode at 3ωpump, (ii) a strong 4th harmonic PSO mode at 4ωpump, and (iii) a narrow 1st order

peak at the fundamental driving frequency, indicative of the build-up of a long-lived supercurrent

(inset, Figure 1d). Odd-order PSO peaks are the hallmark for symmetry breaking, here induced

by THz field-SC condensate coupling. Furthermore, the 4th–to–2nd order peak ratio is ∼10%, 1000

times bigger than in the standard model (14), 1/12πeE/(2pFω)2 ∼10−4.

Figs. 1e (time) and 1f (frequency) compare the experimental results to those of our gauge-

invariant quantum kinetic theory with ps(t) 6=0. By using an effective, slightly asymmetric sub–gap

THz driving of the SC (red lines), we obtain both the forbidden mode at 3ωpump and strong even

harmonics, with a gigantic, interaction–enhanced, 4th–to–2nd order ratio ∼10 %, comparable to that

in the experiment. These HH peaks are vanishingly small in the linearized pseudospin (LPS) model

(black lines). Note that the exact mechanism and details for generating ps(t) do not affect the

above identifications. We also compare to the theoretical results for symmetric THz driving (green

lines), where ps ≈0 after the THz pump, which suppresses the 3ωpump mode (Figure 1f). These

theoretical results indicate that the odd coherent PSOs are controlled by the THz pulse shape and

SC phase spatial fluctuations, Eq.(1), while the even harmonic peak strength mostly depend on the

pairing interaction and lightwave acceleration beyond the LPS model. These results underpin the

interplay between subcycle dynamical symmetry breaking due to ps(t) and interaction-enhanced

HH nonlinearities in determining the light-driven SC ultrafast nonlinear dynamics.

The asymmetric and multi-cycle THz driving used here are critical for inducing non-adiabatically

a moving condensate macroscopic state with forbidden Anderson pseudo-spin modes. Figure 2 com-

pares quantum beating spectra obtained from coherent THz pump-THz probe dynamics driven by

three different electric field waveforms of oscillation cycles and carrier frequency, Figs. 2a-2b, and
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temporal asymmetry, Figure 2c, due to the nonlinear coupling effects. Specifically, in order to ap-

proximately evaluate the role of nonlinear asymmetric coupling, we compute the effective nonlinear

pulse integral
∫ t
−∞ dτ Eeff(τ) by inputing the THz pump pulse waveforms detected via electro-optic

sampling in a <110> ZnTe crystal. Figure 2c clearly shows that the intense THz pulses used here

as pump exhibit a non-zero integral of Eeff(τ), seen as a tilting of the temporal profile. In contrast,

the weak probe THz pulse exhibits zero integral over time with negligible tilting (inset, Figure 2c).

Note that a quantitative analysis of the gauge-invariant coupling of THz fields and superfluid mo-

mentum ps(t) need to also include longitudinal responses from spatial variations of the gap phase

and chemical potential as seen in Eqs.(3) and (4) (method).

We point out four key observations when comparing the pump-probe responses to the three

different pump pulses in Figs 2a and 2b. First, the 0.5 THz excitation clearly reveals 1st-4th PSO

modes (Figure 2d), while the 1 THz excitation does not show 3rd and 4th order HH peaks (Figure

2e). Comparing the 0.5 THz (red) and 1 THz (blue) pump pulses, shown in Figure 2a, the former

has comparable contribution to Anderson pseudo–spin precessions, i.e., A(t)2 ∝ E2/ω2, but higher

asymmetry, seen as larger tilting of the time integral indicative of the nonlinear coupling of the

electric field (Figure 2c). The 0.5 THz (red) pump pulse also has more oscillation cycles (Figure 2a),

i.e., a sharper below-resonance pump spectrum (Figure 2b), while the 1 THz (blue) one tentds to

excite larger QP populations due to spectral overlap and proximity to the SC gap shown in Figure

2b. Second, the single-cycle 1 THz pulse (gray, 47 kV/cm) shows a significantly broadened 2nd PSO

peak without other modes (Figure. 2f), which we attribute to the dephasing of resonantly excited

quasiparticles absent for the multi-cycle (narrow band) 0.5 THz pulse (Figure 2b). The above

comparison indicates that the symmetry breaking and HH modes are determined by the interplay

of pulse asymmetric driving, pulse carrier frequency and oscillation cycles. The importance of more

field cycles (sharper spectral width) and lower driving frequency (less dephasing with minimal QP

excitations) is consistent with our observation that the 0.5 THz pulse driving (Figure 2a) is the

most favorable for observing the nonlinear modes, e.g., it shows a stronger 2nd PSO peak than

even the 1st order linear supercurrent peak (Figure 2d), unlike for the 1 THz pump (Figure 2e).
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Third, the sharp 1st order peaks seen for 0.5 and 1 THz pumping, which underpin condensate flow

and, thereby, broken symmetry in Figs. 2d-2e, are absent in both a dirty limit NbN sample (inset,

Figure 2e) and for the single-cycle 1 THz pump that excites large QPO populations (Figure 2f).

Lastly, the simulated coherent THz pump-probe responses of the current-carrying quantum state

(inset, Figure 2d) show excellent agreement to Figure 2, which corroborates our above assignments

of the observed collective modes. We conclude that the ultrafast SC nonlinear response results from

the interplay of two different photoinduced effects: lightwave nonlinear acceleration of a moving

condensate state with finite momentum pairing and dephasing via photoexcited QP populations.

Light-induced gapless superconductivity

The nonthermal transition from gapped BCS to gapless superfluid state driven by the asym-

metric multi-cycle field E1THz pumping is demonstrated in Figs. 3a (σ1) and 3b (σ2). These figures

show the dissipative and inductive nonlinear responses, respectively, after ∆tpp=100ps, which mea-

sure the QP excitation gap and SC order parameter (ns). σ1 reveals partial quench of the SC gap

for low fields E1THz =34 (blue), 45 (magenta), 62 (black) and a transition to a gapless SC state at

∼ 78kV/cm (red diamond). The latter corresponds to fully filling the gap in σ1, as seen by com-

paring σ1(ω) with the normal state (gray line, Figure 3a). While the THz field quenches EQPmin, a

diverging σ2 arises from the reactive SC coherence peak nsδ(ω = 0). Most intriguingly, despite the

gapless conductivity demonstrated by σ1, the quench of the SC order parameter and ns is minimal

in Figure 3b. This is clearly seen from the similar divergence of the pump-induced (red diamond)

and equilibrium (black dotted line) σ2, which indicates observation of light–induced gapless super-

conductivity. Such gapless SC state with ns 6= 0 can be driven by condensate flow ps 6= 0 and is

distinct from previously known gapless QP states, realized after strong depletion of the condensate,

ns ≈ 0. While such condensate quenching was achieved before by photoexcitation of large QP

populations via broadband single-cycle pumping (67), the gapless SC state achieved here in a non-

equilibrium supercurrent-carrying coherent state with minimally-quenched ns, driven by nonlinear

asymmetric photoexcitations via intense multi-cycle THz pulses. The excitation spectrum of such
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quasi-stationary ordered state with finite Cooper pair velocity after 100ps is intuitively captured

by Figure 1b. QP excitations moving against a critical condensate flow, vs ∼ 3.15 × 104cm/s, are

energetically favorable, but only at certain k-points. This corresponds to populating −k0 + ps ↑

and −k0 + ps ↓ states with QPs after removing the Cooper pairs (k0 + ps ↑, −k0 + ps ↓) and

(−k0 + ps ↑, k0 + ps ↓ from the condensate.

Non-thermal control of the supercurrent-carrying quantum states

The nonthermal dynamics of the moving condensate states can exhibit much longer (∼100ps)

rise times than for single-cycle pulse(67), which, as shown in Figs. 3c, strongly depends on the

pulse temporal profile. This observation indicates a new tuning method for driving non-equilibrium

protected quantum states. By comparing in Figure 3c the ∆E/E0 dynamics excited by three

different THz pump waveforms (Figure 2a), we demonstrate control of the 100ps time evolution by

tuning the intensity, field cycles and nonlinear asymmetry in the temporal profile of the driving THz

field pulse. We compare first the time evolution for the two multi-cycle pulses, which are centered at

0.5 (red line, Figure 3c) or 1 THz (blue line, Figure 3c). These two pulses induce distinctly different

temporal pathways (Figure 3c). First, the very early regime of coherent time evolution (marked as

regime #1) displays pronounced PSOs, including symmetry-forbidden harmonics depending on the

pulse shape. Second, we observe that the much longer temporal evolution well after the excitation

pulse is controlled by the pulse shape (marked as regime #2). Third, the pulse energy required to

reach the same non–equilibrium state after delayed timescales (marked as regime #3) differs by an

order of magnitude between the two multi-cycle pulses: 12nJ vs. 130nJ for 0.5 and 1 THz pulses,

respectively. Intriguingly, the most pronounced delayed build-up appears in the 0.5 THz pump trace

(red line) with much lower pulse energy. Such slow 100ps dynamics coincides with the appearance

of the forbidden Anderson pseudo-spin modes from asymmetric multi-cycle nonlinear THz field

driving seen in Figure 2d. These distinguishing features clearly indicate nonthermal evolution of

the discovered supercurrent-carrying state with minimal SC quench. For a macroscopic condensate

flow (98; 99), the collective ps(t) CM momentum of many Cooper pairs is “protected”, e.g., against
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phonon scattering (100), unlike for individual QPs. In contrast, a single-cycle broadband pulse

centered at 1THz directly excites non-equilibrium QPs by the part of its spectrum above 2 ∆SC

(Figure 2b). Such QP populations quench ns (67), largely suppresses the coherent oscillations, and

lead to very fast rise ∼1ps (gray line, Figure 3c). For such pulse spectrum, QP generation and

dephasing dominate over condensed Cooper pair dynamics and damp the nonlinear modes (Figure

2f). Although low-field single-cycle pulsed excitation can also minimize the SC quench, the post-

quench states in this case show sub-ps fast rise times during the pulse (inset, Figure 3c), a strongly

broadened 2nd PSO mode and no 1st order supercurrent mode (Figure 2f).

A careful study of the complex conductivity (σ1(ω,∆tpp), σ2(ω,∆tpp)) in Figs. 3d and 3e relates

the delayed rise of -∆E/E in regime #2 (Figure. 3c) to the filling of the QP excitation gap by

additional spectral weight. By comparing the non–equilibrium σ1 at 20ps and 100ps for our two

multi-cycle pulses, we see that the initial gap filling continues with a pronounced delayed rise for

pump pulse with ωpump=0.5 THz (Figure 3d). However, the slow rise becomes less obvious for

ωpump=1 THz (Figure 3e), consistent with the respective ∆E/E dynamics in Figure 3c, as a faster

component emerges. This faster dynamics dominates in the case of single-cycle 1THz pumping, as

QP excitation dominates over lightwave acceleration, also evidenced by the absence of HH peaks.

Unlike for σ1, after multi–cycle pumping well below the SC gap, there is very small change in the

condensate density ns measured by σ2(ω) (Figs. 3d-3e).

For more quantitative analysis, we plot the QP density (q, red circle), extracted from the

integrated σ1, and the superfluid density (p, blue circle) extracted from the σ2 divergence, as well

as their sum (Σ, black symbol), as a function of ETHz at 1 THz (inset, Figure 3b). It is clear

that the quenched SC coherence peak nsδ(ω = 0) cannot account for the nearly doubled Σ, e.g.,

for ETHz=78kV/cm. The additional spectral weight during the current-carrying state evolution

is consistent with quenching of the competing martensitic orders as discussed in Ref. (97). A

spectral weight transfer mechanism has been also explored in ultrafast dynamics of competing

spin density wave order (45; 97; 19; 103). In addition, Figure 3g shows the transient complex

conductivity σ1(ω,∆tpp) of the supercurrent-carrying state at time delays ∆tpp=-10–1000ps and
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4.1 K with E1THz =109 kV/cm. The gapless σ1(ω) with finite superfluid density still persists

after ∆tpp=100ps, which again indicates a long-lived moving condensate well after the pulse. The

superfluid momentum diminishes only after long, technologically relevant, nanosecond timescales,

e.g., 750ps and 1000ps traces vs. -10 ps one (red shade), consistent with a persistent current with

lifetime in the ns range.

Gauge-invariant nonequilibrium density matrix simulations

To explore the pathways for nonlinear dynamics of a supercurrent-carrying coherent state, we

solved the gauge-invariant density matrix nonlinear equations of motion outlined in the supple-

mentary. These describe the interplay between Anderson pseudospin nonlinearity and SC quantum

transport driven by lightwave acceleration. In this way, we describe the “initial condition” cre-

ated by coherent time evolution (few ps) due to strong coupling of electromagnetic fields and its

dependence on the driving pulse temporal profile. For this we extend previous studies of HHG

and nonlinear photocurrent coherent control in non-superconducting systems (104; 105), as well as

previous treatments of quantum transport effects in SCs (101; ? ). Here we neglect the effects of

non–thermal coupling to the martensitic order in order to focus on the most critical elements, i.e.

THz light-induced condensate flow ps(t) and spatial modulation of SC pairing. Figure 4a shows

a slightly asymmetric sub–gap pump pulse E(t) with central h̄ωpump=4.1 meV, which drives the

time-dependent superfluid momentum ps(t) shown in Figure 4b, corresponding to rapidly oscillat-

ing Cooper pair CM momentum. The latter determines the light–induced phase of the SC order

parameter, whose amplitude ∆SC(t),characterizing SC coherence and ns, is shown in Fig 4c. While

∆SC(t) decreases with ETHz, for finite ps this coherence quench is more gradual than the closing

of the QP excitation energy gap EQPmin, shown in Figure 4d. This result is in qualitative agreement

with the experimental findings in Figs. 3a-3b and demonstrates that the THz sub–gap pulse can

drive non-adiabatically a gapless SC quantum phase with average ∆SC >0 and EQP =0 only at

certain k–points.
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With lightwave acceleration, we find three different regimes controlled by the pulse. For the

lowest two pump fluences shown (purple and blue lines), both ∆SC and EQPmin are finite after the

pulse. While a gapless state is driven non-adiabatically during the pulse, the system does not stay

there for low fields. With increasing ETHz, a transition to a gapless superfluid state, with ∆SC > 0

and EQP =0, is observed after the pulse (green curve), consistent with the experiment. For very

strong photoexcitation (pink curve), the system reaches a gapless QP state with ∆SC = 0, EQP = 0,

where the macroscopic coherence also vanishes. Figs. 4e-4g summarize the three different regimes,

I–III, after the pulse, which create different initial conditions for delayed time evolution controlled

by ETHz(t). Figure 4e plots the field dependence of the supercurrent momentum ps after the pulse

and compares between symmetric (green curve) and slightly asymmetric (blue curve) effective pulse

shapes. The acceleration of the Cooper pairs and odd-order HH nonlinearities critically depend on

the THz pulse shape, not just its intensity (Figure 1f). We also compare the field dependence of

∆SC (Figure 4f) and EQPmin (Figure 4g) after the pulse between the full gauge–invariant nonlinear

theory with (green curve) or without (blue curve) ps(t) after the pulse and the linearized (LPS)

(black curve) or fully nonlinear (red curve) Anderson pseudo–spin models used before. The latter

assume zero—momentum pairing (k ↑,−k ↓) and give EQPmin = ∆SC . At high ETHz, the fully

nonlinear (red curve) pseudo–spin model predicts a gapless quantum state with ∆SC → 0 (red

curve). Unlike in our experiment, however, such gapless state has conductivity identical to that

of the normal state (37). A symmetric pulse profile (green curves) gives ps(t) 6= 0 only during

the pulse. This approximation produces similar results to the nonlinear pseudospin model, but for

much smaller ETHz, i.e. displays enhanced nonlinearity. Most intriguingly, light–induced gapless

SC can be driven and controlled by a slightly asymmetric, effective pulse shape (blue curve). We

obtain the required combination observed in the experiment after the pulse, ps 6= 0, ∆SC > 0, and

EQPmin = 0, for a range of ETHz (shaded area, regime II), marked by two red arrows that highlight

the different vanishing of EQPmin and ∆SC for finite ps.



www.manaraa.com

83

Conclusion

Our findings establish lightwave acceleration of supercurrents as a dynamical symmetry breaking

principle for discovery of collective modes and emergent materials phases such as gapless supercon-

ductivity. We identify the important role of interference among various quantum pathways induced

by subcycle nonlinear photocurrents and pairing interactions that are controllable by phase-locked

THz pulse excitations.
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Figure 6.1 Figure 6.1 Pseudo–spin coherent oscillations forbidden by the equi-

librium symmetry and strong HHG nonlinearities. (a) Experimental

schematics. Quantum dynamics of Anderson pseudo–spins (arrows) in a su-

percurrent–carrying macroscopic state with time-dependent CM momentum

pairing induced by an intense multi-cycle THz driving electric field. (b) QP

energy dispersion of the fully-gapped equilibrium state (left) and the gapless

current-carrying state with critical condensate flow vs ∼ 3.15× 104cm/s along

x axis (right) in our Nb3Sn sample. Note that ∆SC/EF =0.4, instead of 0.002

in Nb3Sn, is used to better visualize the partial gap closing (supplementary).

(c) Pump induced change ∆E/E for narrow-band driving field centered at 0.5

THz (2.1 meV) shows pronounced quantum beats. Inset to (c): Oscillation

amplitudes vanish at the critical temperature. (d) Quantum beat pump–probe

experimental spectra showing PSO modes at 2 ωpump, 3ωpump, 4ωpump, and

THz–driven supercurrent at ωpump, whose amplitudes are plotted in log scale

to highlight the higher–order PSO harmonics. Inset: Simulated net super-

current, marked by an arrow, produced by a multi-cycle THz pulse as in the

experiment (a)-(b), driving a circuit model (supplementary). Simulated order

parameter dynamics in time (e) and frequency (f) domains, obtained by using

the gauge-invariant quantum kinetic theory summarized in the supplementary,

with asymmetric (red) and symmetric (green) effective input THz pulses, and

the LPS model (black). The amplitude of the forbidden 3ω peak is enhanced

by increasing asymmetric THz driving, while even PSO harmonics are less sen-

sitive to this.
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Figure 6.2 Figure 6.2 Light–Driven Gapless Superconductivity. (a) Three different

THz temporal waveforms Epump(t) measured inside a nonlinear crystal: single–

cycle pulse centered at 1 THz (gray) and multi-cycle pulses centered at 0.5

THz (red) and 1 THz (blue). Their spectra Epump(t) are plotted in (b) and

compared to the static σ1(ω) (empty circles) at 4.1K. (c) Effective THz field

nonlinear coupling by integration
∫ t
−∞ dτ Eeff(τ) using the normalized THz

pump pulses measured inside a nonlinear crystal shows different tilting and

oscillation cycles. Inset: integral of THz probe pulse. (d)-(f) Quantum beat-

ing spectra of experimentally measured coherent THz pump-probe dynamics of

the supercurrent-carrying quantum state under the three different THz driving

fields shown in (a). Even and odd order collective modes are marked by dashed

lines. Inset to (d): The pump-probe spectrum, obtained from the simulated

coherent ∆E/E dynamics using the multi-cycle 0.5 THz pump waveform in

(a) (red line), exhibits collective modes fully consistent with the experiment

(supplementary, Fig. S6). Inset to (e): PSO spectrum of a dirty limit NbN SC

sample at 4.1K driven by the multi-cycle 1THz pulse in (a) (blue line) exhibits

negligible supercurrent peak at the driving frequency.
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Figure 6.3 Figure 6.3 Light–driven gapless superconductivity by non-thermal

control of the supercurrent-carrying quantum states. Real (a) and

imaginary (b) parts of the THz-driven transient state conductivity spectra

σ1(ω) and σ2(ω) at ∆tpp=100ps as function of driving field, compared to the

static SC state at 4.1K (gray solid line) and the normal state (gray dash line)

at 18K. Inset to (b): the QP density q (red circles) was extracted by integrating

σ1(ω) spectral weight (SW) and the condensate density p (blue circles) from

the low–frequency divergence in σ2(ω). q0 denotes the normal state QP SW.

Σ=q/q0 + p/q0 (black symbol) is larger than its normal state value of 1, which

indicates a pump-induced extra SW inside the gap. (c) Temporal dynamics

of ∆E/E under three different driving fields: multi-cycle 0.5 THz (red) and

1 THz (blue) and single-cycle (gray) pump centered at 1 THz. Inset: ∆E/E

dynamics driven by single-cycle THz pump at E field 7kV/cm and 27kV/cm.

(d) and (e): Post-driving σ1 and σ2 (insets) spectra at pump-probe delays from

-10ps to 750ps in (c) for multi-cycle 0.5 THz (d) and 1 THz (e) pumping. The

observed small change in σ2 indicates that ∆E originates from the large pump

induced change in σ1, which arises from filling of the QP excitation energy gap

due to long-lived supercurrent flow with finite order parameter and minimal

quenching of condensate density. (f) Transient state conductivity spectra σ1(ω)

at ∆tpp from -10ps to 1000ps under multi-cycle 1 THz pump with 109kV/cm

peak electric field at 4.1K.
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Figure 6.4 Figure 6.4 Gauge-invariant quantum kinetic calculation of the den-

sity matrix for the periodically driven, supercurrent-carrying macro-

scopic state. (a) The asymmetric THz waveform with peak E fields ranging

from 3.6kV/cm to 28kV/cm centered at 1THz used in the theory simulation.

(b)-(d) Temporal dynamics of condensate momentum psa0 (a0 denotes the lat-

tice constant), SC order parameter 2∆SC and excitation energy EQP calculated

for the THz waveform in (a). (e)-(g) compare the simulation results for the

state after the pulse obtained for the linear (black rectangle) and nonlinear

(red triangle) Anderson pseudospin model to those using the full theory with

symmetric (green circles) and asymmetric (blue circles) THz pump. The latter

shows excellent agreement with the experimental results and allows access to

three different regimes marked by red arrows by increasing the driving field:

partial quench of ∆SC and EQP , gapless SC state with ∆SC 6= 0 and EQP = 0,

and gapless QP coherent state without SC.
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CHAPTER 7. FUTURE PLANS

The original motivation for my PhD study is to explore phase competition and quantum crit-

icality in iron pnictide superconductors. Due to some technical issues, a simpler, more traditional

BCS superconductor Nb3Sn becomes focus of my thesis (67; 97; 159; 150). Phase competition

physics of s-wave superconductor Nb3Sn under resonant intense THz photo-excitation turns out to

be a more complicated and intriguing problem than we expected. Single-cycle THz pump here, as

a non-thermal, non-adiabatic quenching in analogy to parameter quench in cold atoms, serves as

an ideal tool to explore quantum mechanism and quantum control of SC.

In addition to SC, we achieved an ultrafast non-thermal control of competing Martensitic tran-

sition by intense, single-cycle Terahertz (THz) pulses. It is manifested as light-induced, transient

conductivity decrease due to a depletion of spectral weight near the Fermi surface EF that directly

corresponds to the removal of Γ12 band degeneracy. Such dynamic band splitting, indicative of

enhancement of the Martensitic instability, is absent for high energy, thermal photoexcitations and

persists up to a critical temperature at 100K, twice as large as the Martensitic transition TM=48K

in unexcited Nb3Sn samples. Together with first principle calculation, we attribute the transient

increase in TM to the efficient THz tunning of the electronic states near EF and strong electron-

phonon interaction, which gives rise to a photo-induced correlation gap and collective ordering

above TM .

We have obtained preliminary results from optimal doped Ba(Fe1−xCox)2As2 film. Similar

to Nb3Sn, spin density wave competes with SC in iron pnictide compound. Again, we observe

coherent peak builds up at low frequency when condensate is completely quenched, which proves

the generality of our observation in Chapter 3. Anderson pseudo spin precession is excited under

narrow band THz wave. Its amplitude is much more damped due to a dirty limit sample. A

thorough study of iron pinctide SC at various doping would be an interesting topic in the future.
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Ultrafast Terahertz pump-Terahertz (THz) probe spectroscopy also reveals very fast formation

of electron-hole droplets (EHDs) in narrow band semiconductor InSb. Single cycle THz pulse non-

thermally accelerates electron from valance to conduction band via impact ionization and inter-

valley scattering, which forms long-lived indirect excitons. Above threshold density, THz induced

excitons dissociate into electrons and holes, aggregate and form droplet state due to increased

inter-exciton Coulomb interaction. EHDs state is characterized by enhanced THz conductivity,

redshift exitonic peak and broad surface plasmon oscillation mode. Strikingly, formation time

of THz induced EHDs state is one order of magnitude shorter than previous reports by optical

photoexcitation above the bandgap.

In topological insulator Bi2Se3, we demonstrate the suppression of surface-to-bulk scattering

by non-perturbatively driving coherent lattice vibrations above threshold electric field of a single-

cycle, near resonant terahertz (THz) pulse (155). The distinct spectral-temporal characteristics

obtained by a THz pump and THz probe method in Bi2Se3 reveals a marked crossover transition in

the fluence-dependent, surface transport lifetime at the same threshold, absent in the bulk. This,

together with theoretical simulation, identifies the unique role of spin-orbit interaction that reduces

the phase space in the bulk bands available for scattering with Dirac fermions. Harnessing THz

vibrational coherence demonstrated here provides a fundamental insight into the coherence-enabled,

in additional to symmetry protected, quantum transport mechanisms, and imply their control for

unprecedented topological and photonic functionalities and devices.

Previous paper has reported bandgap oscillation in perovskite organic semiconductor under

THz radiation. With much higher E field strength in our setup, we observe THz driven quantum

beats, symmetry controlled excitonic fine structure, and room temperature polaron coherence via

a non-linear interaction process (156). It would be interesting to study the unique intense THz

excitation of exciton in single-walled carbon nanotube (157) and Dirac carriers in single layer

graphene. Second harmonic generation is used to analyze material symmetry of magnetic film

samples (158).
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APPENDIX A. ADDITIONAL MATERIALS: CHAPTER 3

A.1 Two-time THz pump and THz probe spectroscopy of complex

conductivity

Terahertz (THz) response functions such as the complex conductivity σ̃ = σ1(ω)+iσ2(ω) can be

used to characterize the fundamental properties of correlated electronic states. They allow access

to some key properties, e.g., the lifetime of low–frequency electronic excitations, scattering rates,

electron–phonon and electron–impurity mass renormalization, and complex optical self-energy. The

two-time THz pump and THz probe spectroscopy technique used here is a versatile tool for mea-

suring the THz response functions both in– and out–of–equilibrium without excessive heating.

We characterize the nonequilibrium post-quench states by measuring the complex conductivity

(σ1(ω,∆tpp), σ2(ω,∆tpp)) as a function of pump-probe delay ∆tpp, as illustrated in Figure A.1.

In this way we access electronic correlation and fluctuations in the post-quantum-quench states.

Two time, 

THz pump & THz probe

)(tE'' prTHz

)(tE' puTHz
gatet

put

prt Nb3Sn sample 

4.1K-300K

Electro-optic detector 
outTHzE'' ,

Gate pulse 

Figure A.1 A schematic of two-time, THz pump and THz probe spectroscopy of a Nb3Sn

superconductor.

More subtleties of this type of analysis can be found in the literature, e.g., see Ref (118). One

widely accepted conclusion relevant for this work is that the procedure used bere is reliable for
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describing out-of-equilibrium states and dynamics that last longer than the scattering time, i.e.,

∆tpp > τ . This applies well in our observation of the persisting quantum state.

A.2 Thermodynamic properties and more characterizations of our sample

The equilibrium electrodynamic response in the vicinity of the SC gaps is obtained by time-

domain THz spectroscopy shown in Figure 3.1(D) and (E) in the main text. Both the equilibrium

gap size ∆SC and the superfluid density n0 are obtained from these THz spectra, shown as insets,

and reduce to zero as the temperature approaches Tc. Specifically, the equilibrium 4.1 K traces

exhibit a large, 1/ω response in σ2, which is a well–recognized feature of the SC condensate resulting

from loss-free, yet reactive, bosons, and zero conductivity in σ1 below 5.1 meV corresponding to

twice the SC gap ∆SC . At the lowest frequencies <3 meV, a finite σ1 results from intraband

absorption of the thermally excited Bogoliubons, |1, 0〉 and |0, 1〉, of electron and hole excitations

dressed by the BCS coherence |ψSC〉 of Cooper pairs |1, 1〉. The above spectral shapes change in the

normal state, as seen in the 16 K traces, in both σ2(ω), which gradually decreases at low frequency,

and in σ1(ω), which shows zero gap. The equilibrium conductivity characterizes the relatively long

mean field path, comparable to the coherent length, l/ξ = πτ∆SC/h̄ ∼1, which is far from the

dirty limit studied in previous THz experiments, as discussed in details in Section A6.

A.3 Effective medium theory calculations

The observed, prethermalized quantum state is also well-distinguished from thermally mixed

states (phase separation) as demonstrated in Figure A.3(A)-(B). For example, prior THz studies

of dirty-limit BCS samples (8), using lower quench field than used here, identified a spatially

mixed phase with finite superfluid density, which is in contrast to the conductivity of our measured

full quench regime. For example, σ2(ω) is entirely below the normal state spectra, as shown in the

446kV trace in Figure A.3 (solid red diamonds) and Figure 3.2(B) (#5−#6). These is not expected

for a statistical mixture of SC and normal state conductivities. Another significant difference lies

in the σ1(ω) spectra of our prethermalized quantum state (solid red diamonds, Figure A.3(A)),
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which exceed the normal state spectra above Tc near the Fermi surface (gray rectangles) and,

thereby, result in ∼10% of spectral weight in the range of 0-10 meV. This distinction highlights

deviations from the prior experimental observations, which shows the similar spectral weight as

normal state (8), and from predictions by the BCS quench model, which shows similar σ1(ω)

line shape as the normal state (37). Specifically, Figure A.3(A) and S3B presents an effective

medium calculation (EMT) of the dielectric response of a spatially inhomogeneous state from phase

separated patches consist of SC and normal states. Since the equilibrium conductivity of our cleaner

sample cannot be described by the Mattis-Bardeen (MB) model used in prior studies of dirty limit

superconductors (8; 28) we adopt the measured dielectric responses at the two boundaries, i.e., SC

(gray circles) and normal states (gray rectangles), using the measured data in Figure 3.1(D) and

(E). The EMT calculates the effective dielectric response of materials by evaluating the contribution

from two composites that are spatially separated, e.g. the SC state and the normal state in type

II superconductors. Assuming that the non-equilibrium state is a result of spatial inhomogeneity,

the optical response should satisfy:

f
σN (ω)− σeff (ω)

gσN (ω) + (1− g)σeff (ω)
+ (1− f)

σS(ω)− σeff (ω)

gσS(ω) + (1− g)σeff (ω)
= 0 (A.1)

where σN (ω), σS(ω) are the static conductivities of normal state (18K) and SC state (4K).

The coefficient f describes the volume fraction of normal state in superconductor and g is the

depolarization factor determined by the shape of the hot spots, which we assume to be 0.5. The

coefficient f in post-quench phase is chosen to be 0.1 (pink circles), 0.5 (green circles) and 0.9

(blue circles). We emphasize two key differences between such spatially mixed states and the

prethermalized quantum phase observed here. First, the additional coherent peaks in σ1(ω) and the

larger spectral weight S(ω)=
∫
σ1dω near the Fermi surface as compared to the thermalized states

cannot be accounted for the sharp low frequency features and smaller S(ω) found for the mixed

states (solid circles, Figure A.3(A), due to the residual of SC phases. Second, the spatially mixed

state description again clearly fails to describe our data due to the requirement of simultaneously

fitting both dielectric responses, σ1(ω) and σ2(ω). It is clearly visible that the post-quench spectra,
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Figure A.2 Simulation of effective THz responses σ1 (a) and σ2 (b) for a spatially in-

homogeneous phase of SC and metallic patches for different values of filling

coefficient f=0.1 (pink), 0.5 (green) and 0.9 (blue). Shown together is the

behaviors for the pre-thermalized, gapless quantum phase (red diamond) and

static optical responses at 4.1K and 18K directly obtained in our measurement

(gray diamond).

σ1(ω) and σ2(ω), have opposite dependence on parameter f which, in turn, cannot be simultaneously

fitted by changing f.

A.4 Frequency-dependent electric transport

The optical self-energy has been identified to be more effective than σ̃(ω) itself for under-

pinning the exact nature of correlated electronic states. This self–energy can be regarded as a

model–independent memory function in analogy to the way in which we analyze many-body in-

teractions in the Green’s function approach. Practically, it carries very similar information as the

quasi-particle self-energy that is measured by, e.g., photoemission. The key difference is that the
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forward electron scattering weights in such “THz” self-energy more than the backward scattering.

Figure A.4 presents the complex optical self-energy Σ(ω, T ) in terms of both frequency-dependent,

momentum scattering rate 1/τ(ω) and electron-phonon mass renormalization 1+λ(ω), which relate

to the conductivity imaginary and real parts. These quantities are obtained as follows:

1

τ(ω)
=
ω2
op

4π

σ1

σ2
1 + σ2

2

(A.2)

and

1 + λop(ω) =
m∗op(ω)

m
=
ω2
op

4π

σ1

σ2
1 + σ2

2

1

ω
. (A.3)

Here, the plasma frequency ωp is obtained by fitting the normal state conductivity spectra with

Drude model, which gives the plasma frequency to be ∼6.66eV

The superfluid density is obtained by sum rule:∫ +∞

0
(σn1 (ω)− σs1(ω)) dω =

π

2

nse
2

m
. (A.4)

The superfluid density ns obtained from the sum rule agrees well with the extrapolated σs2(ω) in

the limit of ω →0 in the superconducting state:

ns(T )

n
= (

ω2
p

4π
)−1 lim

ω→0
ωσ2. (A.5)

Both methods give the number of superfluid over total carriers ns/n0 to be ∼70%.

Next we discuss the results on the optical self-energy of the equilibrium state in Figure A.4(A)

and (B). On the one hand, in the SC state, the 1/τop(ω) spectra in Figure A.4(B) clearly reveal the

SC gap opening, which leads to significantly suppressed momentum scattering rate below 2∆SC

and reduces to zero at 4.1K. In the normal state, the elastic impurity scattering rate 1/τimp is

seen directly from the low frequency spectra, e.g., the 20K traces converge to a frequency– and

temperature–independent constant ∼7.7 meV smaller than in most noble metals. On the other

hand, m∗(ω, T )/m0, shown in Figure A.4(A), in the SC state as ω →0 approaches n/ns, i.e., the

ratio between the electron density n in the normal state and the superfluid density ns. For example,

n/ns(4.1K) = m∗(ω = 0, 4.1K)/m0 ∼1.34 indicates that ∼75% of the total electrons participate in

superfluidity. This is close to the value obtained from the optical sum rule in Eq.(12). Moreover,
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Figure A.3 The complex optical self-energy Σ(ω, T ) in terms of both frequency-dependent,

mass renormalization (a) 1+λ(ω) and momentum scattering rate 1/τ(ω) (b) for

various temperatures, 4K (red circles), 11K (purple star), 14K (blue diamond)

and 20K (black circles).

sharp impurity peaks are absent in 1/τop(ω) and 1+λ(ω) at 2∆SC . Both factors demonstrate much

less impurity scattering in our high quality film samples than in those used in prior THz studies of

BCS superconductors (28; 8; 22; 23).

The ratio of mean free path and coherent length to be l/ξ = πτ∆/h̄ is calculated ∼1 in our

sample, an order of magnitude larger than in other experiments reported in the literature, again

indicative of very high film quality. Moreoever, note that here the complex conductivity and self-

energy spectra are not described well by the Mattis-Bardeen formula commonly used for fitting

dirty-limit superconductors.

Figure A.5 presents the mass renormalization 1 + λ(ω) of the post-quench state for various

time delays ∆tpp of -10ps (green), 12ps (purple), 500ps (gray), 1ns (pink) at Epump = 620kV/cm

at 4.1K (A) and 18K (B). They are comparable in size for the post-quench (solid circles) and

equilibrium normal states that are more or less frequency independent. This confirms again the

unique lineshape of 1/τ(ω) (Figure 3.2(D)) as a powerful probe of the post-quench quantum state
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Figure A.4 a: Mass renormalization 1 + λ(ω) of the post-quench state for various time

delays ∆tpp of -10ps (green), 12ps (purple), 500ps (gray), 1ns (pink) at

Epump=620kV/cm at 4.1K. b: The same spectral-temporal characteristics for

the normal state at 18K.

below Tc. Moreover, 1 + λ(ω) (Figure A.5(A)) shows no relaxation to the ground state even up

1 ns which corroborates of our claim that, at high quench ETHz > Eth, a much longer many-

ns quasi-steady temporal regime emerges and dominates the energy relaxation and quasi-particle

decay within less than 1 ns when close to the equilibrium state (Figure A.5(B)).

A.5 Theoretical model of gapless conducting state

A strong THz pump pulse tuned close to the SC gap can deplete the SC condensate with min-

imal heating by exciting low energy quasi–particle populations. The spectral weight of the SC

delta–function peak of σ1 at ω = 0, proportional to the superfluid density ns, is then transfered to

frequencies 0< ω ≤ ∆SC . Since the experiment indicates that the post–quench, prethermalization

temporal regime with ∆SC(t) = 0 is characterized by an increase in the spectral weight of this

low frequency region as compared to the normal state, this shows that the spectral weight of the

condensate peak did not come exclusively from ω ≤ 2∆SC . While the ultrafast quench of the
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BCS SC gap can lead to a gapless state with finite coherence at early times, its conductivity line-

shape remains similar to that of the normal state (37), while inelastic processes should lead to fast

thermalization to a quasi–equilibrium state. Thus a simple BCS model does not explain the exper-

imental observations. In our Nb3Sn superconductor studied here, the signatures of charge density

wave order, shown in Figure A.2, are consistent with those reported that have been in the literature

and may be attributed to three–dimensional Van Hove Singularities and saddle points predicted by

bandstructure calculations (31; 33; 34). Therefore, we interpret our experimental results in terms

of dynamical coexistence of superconducting, ∆SC(t), and hidden CDW like order parameters,

whose time–dependence is triggered by ultrafast THz quantum quench. For ∆SC � ∆CDW , such

excitation will affect the two order parameter components differently, quenching ∆SC(t) similar to

a single–component BCS system while having a smaller effect on the much larger ∆CDW (t) during

very early time scales.

To interpret the experimental results, we use an extension of the one-dimensional electron

model introduced by Bilbro and McMillan (30) to a three dimensional anisotropic electron band

model. The latter accounts for the three-dimensional Van Hove singularities seen in bandstructure

calculations (33; 34). Similar to Ref. (30), our model assumes that the Fermi surface consists of

two regions: region 1 corresponds to momenta close to the Van–Hove singularities, where the Fermi

surface shows nesting predicted by bandstructure calculations. This region favors the emergence of

CDW order, which coexists with the SC order. On the other hand, only formation of SC order is

possible in the rest of the Fermi surface, referred to as region 2.

Our model Hamiltonian describing the competition of SC order with CDW order in mean-field

approximation is given by (30)

H = H0 +HSC +HCDW +
∆2
SC

VSC
+

∆2
CDW

VCDW
. (A.6)

In the above equation, the free Hamiltonian is

H0 =
∑
k,σ

ξkc
†
k,σck,σ (A.7)
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where the operator c†k,σ creates an electron with crystal momentum h̄k and spin σ. For simplicity,

we assume that the Fermi surface close to the three-dimensional Van Hove singularities can be

described by one hole and one electron pocket separated by wavevector Q (99). We approximate

the dispersion close to the electron and hole pockets as

ξk = −ξ1,0 +
∑
j

h̄2k2
j

2mj,1
− µ , ξk+Q = ξ2,0 −

∑
j

h̄2k2
j

2mj,2
− µ (A.8)

respectively, with chemical potential µ, band-offsets ξn,0, and effective masses mj,n (j = x, y, z) that

depend on the details of the bandstructure. Here we do not consider such bandstructure details but

simply point out that electron–hole asymmetry enhances the coexistence of SC with CDW order.

The parameters used to introduce such electron–hole asymmetry here were mx,1 = my,1 = mz,1 =

1.3m0, where m0 is the free electron mass, and mx,2 = my,2 = mz,2 = 2.0m0, with band-offsets

ξ1,0 = 0.095eV and ξ2,0 = 0.125eV and chemical potential µ = 20.0meV . The results are not very

sensitive to this particular choice of parameters. Note that the band–offsets may change following

laser excitation, due to non–equilibrium chemical potentials that differ between electron and hole,

which leads to photoinduced changes in nesting and CDW correlation. The SC pairing interaction

is given by

HSC = −
∑
k,σ

[
∆SC c

†
k,↑c

†
−k,↓ + h.c.

]
(A.9)

where the SC order parameter is

∆SC = VSC
∑
k

〈c−k,↓ck,↑〉 (A.10)

and VSC describes the strength of the interaction. The k-sum includes the set W of wavevectors k

in regions 1 and 2 with |ξk| ≤ h̄ωC, where ωC is the cut-off frequency. The CDW interaction has

the form

HCDW = −
∑
k,σ

[
∆CDW c†k,σck+Q,σ + h.c.

]
(A.11)

where ∆CDW is the CDW order parameter with electronic and lattice contributions (119), which

are proportional in quasi-equilibrium. Here, the k-sum includes only the wavevectors of region 1.
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The last term in Eq. (C.8) includes the lattice elastic energy and VCDW depends on the lattice

elastic constant.

We diagonalize the above Hamiltonian using a canonical transformation (30) and calculate the

free energy F =< H > −TS assuming a thermal distribution of quasi–particles. The details of the

calculation will be given elsewhere. The quasiparticle excitation energies in the absence of perfect

nesting are given by

E2
±,1,k =

1

2

[
2∆2

SC + 2∆2
CDW + ξ2

k + ξ2
k+Q ± (ξk + ξk+Q)

√
4 ∆2

CDW + (ξk − ξk+Q)2

]
,

E2
±,2,k =

1

2

[
2∆2

SC + ξ2
k + ξ2

k+Q ± (ξ2
k − ξ2

k+Q)
]
, (A.12)

in region 1 and 2, respectively. The free-energy density, shown in the main text, is given by

f(∆SC ,∆CDW ) =
∆2
SC

VSC
+

∆2
CDW

VCDW
− 2 kB T

∑
k,a,l

log

[
2 cosh

(
Ea,l,k
2 kB T

)]
, (A.13)

Here, the index a describes the two quasi–particle branches ± at given k in the case of imperfect

nesting, while ā is defined as ā = + for a = − and ā = − for a = +. The temperature-dependent

energy gap equations follow from ∂f(∆SC,∆CDW)/∂∆SC = ∂f(∆SC,∆CDW)/∂∆CDW = 0:

∆SC = VSC
∑
k,a,l

∆SC

Ea,l,k
tanh

(
Ea,l,k
2 kB T

)
,

∆CDW = VCDW
∑
k,a

∆CDW (E2
a,1,k −∆2

SC + ξkξk+Q −∆2
CDW )

Ea,1,k(E2
a,1,k − E2

ā,1,k)
tanh

(
Ea,1,k
2 kB T

)
. (A.14)

where ∆CDW is determined by k–summation in region 1 and ∆SC depends on both regions. To

compute the order parameters in equilibrium, we self-consistently solved the above coupled gap

equations for given temperature T .

A.6 Discussion on conductivity divergent behavior above threshold pumping

field of prethermalization state

In this section, we like to make further discussions on the sharp turning up above the thresh-

old (#4, #5 and #6) to a metastable QP phase (related to the feature in coherent σ1 peak via
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Kramers-Kronig) rather than to a residual condensate as in a SC/normal mixed state. Figure A.5

plots together the σ2 of the post-quench states for three E fields below, at, and above the threshold

Eth (marked as #3, #4 and #5 as shown in the Figure 3.2(b) of the main text) where the prether-

malization plateau is observed and the equilibrium σ2 at five temperatures ranging from T = 4K

to T = Tc = 16K. We make our claims mainly based on three different observations:

1. The low frequency kink in σ2 (at around 2-3 meV) is indeed present in the partial quench

data, e.g., for the E-field #3 which is below Eth = 256kV/cm. As we pointed out in our previous

response, this upturn in σ2 is intimately connected to the sharp upturn in σ1 at low frequencies

(via Kramers-Kronig relation) which we clearly observe in our measured frequency range for such

below-threshold fields. Our statement that this kink feature is associated with a metastable non-

equilibrium state partially stems from our observation that such a kink frequency dependence of

the non-equilibrium conductivity differs notably from the behavior of the equilibrium conductivity

(at any temperature). In equilibrium, as shown in Figure 3.1 (full lines), σ2 shows a smooth 1/ω

upturn towards low frequencies below Tc, on top of the broad, vanishing normal state curve (black

line) measured at Tc=16K. Therefore we are very confident that this salient feature is not due

to a simple residual condensate fraction present in part of the sample. This conclusion is further

based on our analysis presented in Figure A.3, which excludes an inhomogeneous state with SC

and normal regions, as acknowledged by the referee as well.

2. Even more critically, there is clear evidence, directly seen in Figure A.5, that the sharp

upturn in the σ2 spectra above the threshold, E field #4 and #5, cannot be assigned to the residual

condensate either. Let’s first focus on the post quench state at the threshold field (#4). σ2 for

#4 lies entirely below the normal state σ2 (black line) down to ∼2meV and then clearly shoots up

much more dramatically at lower frequency, in a way that is not accounted by a residual condensate

coherence at any temperature. For example, compare the above post-quench σ2 lineshape with

the static/equilibrium σ2 (full lines). Although the latter does turn up due to the presence of a

partial condensate, this upturn is much less sharp than the non-equilibrium feature towards lower

frequency, especially at higher temperatures. For E field #3 below threshold, the low frequency
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upturn could be accounted by the static 14K trace in a reasonable way. However, at threshold

(#4), σ2 exhibits a much sharper turning up below ∼2meV as compared to that of the 14K and

15K (or lower T) static traces. Therefore a key conclusion that can safely be drawn from our data

here is that the sharp upturn in σ2 above the threshold cannot be accounted for by a simple 1/ω

increase due to the residual condensate coherence. For #5, our spectral range is not enough to

resolve more data points of low frequency upturn, yet the trend is consistent with our argument

above.

3. Finally, we want to point out that the metastability of the non-thermal post-quench state (for

the strongest E field) follows even more directly from the time traces of ∆E/E0 presented in Figure

3.3 and does not rely exclusively on the above non-thermal behavior of σ2. There, the time decay

processes clearly show the emergence of the prethermalization plateau above Eth (#4, #5 and #6),

which differentiates the metastable QP quantum phase, with a distinctly long recovery, from the

partial quench of the condensate, with distinctly shorter recovery times below the threshold. These

different results put together clearly show that, even if the metastable state would show a kink

feature at frequencies below our spectral detection range, this non-equilibrium state still clearly

shows non-thermal decay features beyond equilibrium superconductivity. That’s another reason

why we attribute the sharp turning up above the threshold (#4, #5 and #6) to a metastable QP

phase (related to the feature in coherent σ1 peak via Kramers-Kronig) rather than to a residual

condensate as in a SC/normal mixed state.

In summary, the main features of the metastable “non-thermal” post-quench state in Figure

A.5 (or Figure 3.2 of the main text) and our interpretation are fully consistent. We note that this

experimental observation is beyond the well-known phenomenology of a BCS quench scenario (as

explained by Barankov, Levitov and others). Thus, our main goal here is to provide the original

data that give the evidence for the existence of a metastable state and a first possible consistent

description of the salient features that characterize such a state. We are fully aware that this state

is worthy of further theoretical investigation that we hope that our manuscript will stimulate this

(as pointed out nicely by Referee 2 as well).
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Figure A.5 The σ2 of the post-quench states for three E fields below, at, and above the

threshold Eth (marked as E#3−#5 as shown in the Figure 3.2b of the main text)

and the equilibrium σ2 at five temperatures ranging from T=4K to T=Tc.
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APPENDIX B. ADDITIONAL MATERIALS: CHAPTER 4

B.1 Mattis-Bardeen Theorem Fitting

In this section, we simulate the static THz conductivity of Nb3Sn by Mattis-Bardeen (MB)

model (127) used for type I, dirty limit superconductors. It has been used extensively in prior

studies and successfully accounts for the measured THz electrodynamics in both NbN (54; 8) and

MgB2 (128; 53) superconductors. Given the normal state conductivity σ1(ω) at 16K, MB model

reproduces THz response function of Nb3Sn at various temperatures plotted in Figure B.1.
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Figure B.1 Temperature dependent THz conductivity σ1(ω) (left) and σ2(ω) (right) at

4K, 16K compared to simulation done by Mattis-Bardeen theory

Simulation results present a clear deviation from experiment data in Figure 4.1(b)-(c) (main

text). For example, simulated σ2(ω) is much smaller than measured values at 15.5K, while showing

larger divergence at 4K towards zero frequency. This comparison demonstrates that cleanness of

superconductor sample is crucial for accounting the measured THz electrodynamics in the vicinity
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of SC gap, which differentiates THz electrodynamics of cleaner Nb3Sn from prior THz results on

dirty samples.

On the other hand, cleanness of sample has no influence on theoretical analysis of optical

pump-probe dynamics presented here, since the RT model used does not consider electron-impurity

scattering and sample cleanness (59; 58). In Table II. we can see that Nb3Sn is much cleaner than

previously studied NbN and MgB2.

B.2 THz Probing of Martensitic Phase

The correlation gap ∆w associated with the Martensitic order inferred from scanning tunneling

spectroscopy is ∼80 meV as a CDW-like feature which is out of the spectral window of our setup.

There are also several other important reasons that make the Martensitic order relatively “blind”

in the low frequency conductivity spectra.
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Figure B.2 Static THz conductivity σ1 spectrum at temperature above Tc from 18K to

180K.



www.manaraa.com

119

First, unlike typical density wave orders where a significant spectra weight transfer , from low to

high frequency develops in conjunction with establishment of the correlation gap, the Martensitic

order represents a very subtle partial gapping of Fermi surface. Our data in Figure 4.2(c) (main text)

measures this low frequency conductivity in Nb3Sn for the first time that allows the determination

of a spectra weight change of less than 1% in the range of 1-10 meV. In contrast, materials with

density wave orders typically produce more than 100% change which makes them clearly visible in

low frequency conductivity, e.g., TiSe2 (CDW) (129) and BaFe2As2 (SDW) ().

Second, temperature dependence of static optical conductivity in Nb3Sn is affected by two

competing effects at elevated temperature: increased scattering rate and suppressed Martensitic

gap ∆w. As shown in Figure B.2, spectral weight and slope of σ1(ω) decreases simultaneously

as temperature increases. Unfortunately, scattering rate increase is more significant than spectral

weight transfer above SC critical temperature Tc, which results in a decrease of spectra weight in

the 1-10 meV by thermal broadening with increasing lattice temperature, as shown in Figure B.2 .

It is worth noting that such a decrease of the spectral weight at elevated temperatures is opposite

to the strong density wave materials such as TiSe2 (CDW) and BaFe2As2 (SDW) that show an

increase of the spectral weight. Such thermal effect makes it difficult to underpin the suppression

of ∆w from the measured, static THz conductivity.

On the flip side, the above-mentioned difficulties show that the pump-probe measurement with

superior signal-noise ratio represent a powerful method to probe study subtle change of Martensitic

phase with a clear transition temperature at 47K (49; 32; 51; 52). The pump-induced increase

of spectral weight indicates a distinct non-thermal ultrafast softening of the correlation gap since

laser-induced heating will decrease the spectra weight after the pump. Here we demonstrate the

first ultrafast measurement of the Martensitic order and non-thermal melting of its correlation gap

by much lower frequency THz probe.
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B.3 Determination of Laser Energy Absorption

In our measurement we calculate 800nm energy absorption by Nb3Sn film at 4K by measuring

the fs laser pulse transmission through sample. The pump fluence is set to 4µJ/cm2, same as the

saturation fluence in inset of Figure 4.4(C). The experiment data is shown in Table I.

Table B.1 Laser power transmission measurement results.

800nm, 35fs pulse Total Transmission

Laser Power 4mW 0.451mW

Since Nb3Sn film thickness (20nm) is much smaller than penetration depth 64-93nm (148; 130),

we can use the following way it to calculate absorbed laser energy ratio. The absorption coefficient

of Nb3Sn is:

α =
2

δ0
=

1

40
nm−1 (B.1)

by using penetration depth δ0 = 80nm. According to Lambert-Beer’s law:

α = −1

I

dI

dr
(B.2)

we can get laser energy transmission through sample as:

Iout/Iin = e−αds = 0.61 (B.3)

where ds = 20nm is the sample thickness and Iin, Iout are the laser fluences penetrating in/out

from the sample. THe absorbed energy density Iabs is:

Iabs/Iin = (Iin − Iout)/Iout = 0.64 (B.4)

From this ratio, we can calculate energy absorption Pabs = 0.288mW , which takes up around 7.2%

of the total laser energy shining on the sample. Considering double reflection by sapphire substrate,

around 90% of absorbed energy is actually from initial laser excitation. Although there are other

details to make the accurate determination of energy absorption rate in experiment, like coherent
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transmission within film samples, the above estimation is similar to prior references (128) and

should be at the same order of accurate values. Since our sample thickness ds << δ0, penetration

depth can’t be determined accurately in experiment. Instead, we measure light transmission and

use penetration depth reported in previous references here. It is slightly different from (54), which

determines penetration depth of NbN film at thickness ∼ δ0 in experiment.

By assuming uniform excitation within Nb3Sn film, the average laser absorption energy density

at saturation fluence Ipump is:

Uabs = 90%× 7.2%× Ipump/ds

= 0.1302J/cm3 = 5768.8mJ/mol

(B.5)

where ds = 20nm is the sample thickness. Light energy deposition into sample matches BCS

condensation energy U = 4757mJ/cm3 quite well (60). This corroborates our analysis and the

quantum limit energy transfer picture in Nb3Sn superconductor.

Such measurement also demonstrates that Martensitic phase has ignorable influence on Cooper

pair breaking process, since it is greatly suppressed below Tc by the establishment of superconduc-

tivity.

B.4 Determination of Laser Energy Absorption

Here we estimate 800nm energy absorption by Nb3Sn film by measuring the fs laser pulse

transmission and reflection at 4K. Pump fluence is set to 4µJ/cm2, same as the saturation fluence

in inset of Fig.4(c) (main text). The experiment data is shown in Table I and the laser reflection,

transmission by different surface is shown in Fig. B.3.

Table B.2 Laser power transmission measurement results.

Total Itotal Transmission It Reflection Ir
Sample 4.00mW 0.62mW 3.06mW

Ratio (/Itotal) T = 15.5% R = 76.5%
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Figure B.3 Laser energy transmission through 20nm Nb3Sn film on 1mm sapphire sub-

strate. Itotal: total laser fluence used to excite sample; Iin, Iout: laser fluence

penetrating in and out from the film; Ir: film reflection; It: laser transmission

through substrate; Idr: double reflection by back surface of substrate.

Substrate transmission ratio is:

Tsub =
It
Iout

= 1− (
nsub − 1

nsub + 1
)2 = 92.4% (B.6)

in which optical index of sapphire substrate nsub = 1.76 at 800nm. From Ts we can estimate that

Idr/Itotal = T · (1− Tsub)/Tsub = 1.27%.

It is worth noting that measurement in Table I includes multiply laser reflection from substrate,

as shown in the Fig. B.3. To simplify the calculation, we assume all double reflection energy by

substrate is completely reabsorbed by sample. Since it only takes only 1.27% of total energy, such

assumption has little influence on final results. However, this secondary energy absorption should

be excluded from our estimation since ”Quantum limit” energy transfer only refers to the initial fs
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excitation. Laser transmission from film to substrate is:

Ts = Iout/Itotal = T/Tsub = 16.8% (B.7)

Laser energy absorption ratio by Nb3Sn is:

A = 1− Ir
Itotal

− Iout
Itotal

= 1−R− Ts = 6.7% (B.8)

The average laser absorption energy density at saturation fluence Ipump is:

Uabs = 6.7%× Ipump/ds

= 0.13467J/cm3 = 5967mJ/mol

(B.9)

where ds = 20nm is the sample thickness. Light energy deposition into sample matches well with

BCS condensation energy UBCS = 4757mJ/mol (60). This analysis is consistent with (54) and

corroborates the ”Quantum limit” energy transfer process in Nb3Sn superconductor.

Since sample thickness is much smaller than wavelength, multiply reflections and coherent light

propagation have to be considered. From R and Ts, we can extract Nb3Sn complex optical index

ns. The penetration depth for 800nm light is:

δ =
c

ω Im(ns)
= 26.7nm (B.10)

which is at the same order of values reported in (130; 148).

B.5 Rothwarf-Taylor Model Analysis

The Cooper pair breaking (CPB) dynamics by high energy photons can be quantitatively an-

alyzed using RT model. Prior experimental studies are summarized in Table II as comparison to

our work. The fitting procedure is descried below.

B.5.1 Step.1: Fitting of the pump-probe dynamics.

In the low photoexcitation limit, the pump-probe signal Q is proportional to the photoexcitation

quasi-particle (QP) density n(t) (53; 58) which is described by the RT model:
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Table B.3 Comparison of Optical Pump-THz Probe Experiment on NbN , MgB2 and

Nb3Sn Superconductor

Sample NbN (54) MgB2 (53), (131) Nb3Sn

Transport Lifetime 246cm−1=22fs 37meV=18fs 8.27meV=80fs

Photoexcitation Pulse Duration 50fs 150fs 35fs

Electron-Phonon Coupling λ 1.1 0.7-0.9 2

p ∼9% ∼6% ∼0.33%

Q ∝ n(t) =
1

R
[−0.25β − β

2τ
+
β

τ

1

1−Kexp(− t
τ/β )

] (B.11)

The fitting parameters are {R, β, ( τβ )i,Ki}, where R and β are the common parameters for all pump

fluence, τ
β and K are fluence dependent. Through fitting the pump-probe dynamics at different

fluence (Figure 4.4(a)), we can extract K and τ
β as the function of fluence (Figure 4.4(b)-(c)).

Meanwhile, in this step, we can obtain R∗ ∼ 104 (a constant times R) and β ∼ 1.1.

B.5.2 Step.2: Fitting of τ
β and K vs. fluence.

The following relations are used in our fitting of τ
β and K:

τ−1 =

√
1

4
+

2R

β
(2N0 + n0) (B.12)

K =
(4Rn0

β + 1)− 2τ−1

(4Rn0
β + 1) + 2τ−1

(B.13)

where n0 = pΩ/∆ and N0 = (1 − p)Ω/∆ are initial density of QPs and high frequency phonons

(HFP) right after optical pump. p is the portion of photoexcitation energy Ω that initially goes to

QPs.

Here we convert laser fluence µJ/cm2 to µeV/unit cell. We know that Nb3Sn has a cubic

Pm − 3n structure with 2 formula units in the unit cell and lattice constant a = 5.28Å. As we

discussed above, laser energy absorption matches well with BCS condensation energy in Nb3Sn.

We can obtain the conversion relation: 1µJ/cm2 ∼ 24.531µeV/ unit cell.
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The best fit was obtained when p = 0.2%, giving R = 105 and β = 1.0, consistent with the

value from the first step. Figure 4.4(d) is plotted in the way that a series of fitting were performed

by fixing p and optimizing R and β. The mean squared error (MSE) represents the difference

between fitted values of K, τβ and the targets (i.e. fitting parameters obtained in step 1 and plotted

in Figure 4.4 (b) and (c)):

MSE =
∑
i

{(Ki
fit −Ki

tar)
2 + [(

τ

β
)ifit − (

τ

β
)itar]

2} (B.14)

Here we briefly discuss about fitting accuracy of RT model. Photoexcitation energy Ω and

SC gap ∆ can be measured in experiment. Since τ−1 and K are fluence dependent parameter as

function of {R, β, N0, n0}, while {N0, n0} is calculated from {p, Ω, ∆}, τ−1 and K are ultimately

determined by two sets of parameters: fluence independent {R, β, p} and photoexcitation energy Ω.

Since fitted pump-probe dynamics in Fig. 4.4(a) contains hundreds of data points at each fluence,

unique set of {R, β, p} can be obtained at very high accuracy.

B.5.3 Further discussion on the fitting parameters

To understand the difference in the fitted values of β (i.e. CPB probability by adsorption of

HFP) and R (i.e. bare QP recombination rate) in different systems, we further computed β/R in

MgB2, NbN and Nb3Sn as it has the dimensionality of concentration and can be expressed in

terms of material intrinsic properties:

β

R
=
N(0)2πω3

D

18ν∆
(B.15)

where N(0) is the electronic density of states (DOS) per unit cell, ωD is the Debye energy, ν is the

number of atomes per unit cell, ∆ is the superconducting gap.

The calculated results and other key parameters of different materials (MgB2, NbN , and

Nb3Sn) are summarized in Table III (Supplementary). Fitted β/R shows a decent agreement

with calculated values by Eq.(10). We found that β/R in Nb3Sn is much larger (more than 10

times) than the other two systems, which is attributed to the much larger DOS at the Fermi level.
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Assuming that the absorbed optical energy exceeds the condensation energy by a factor of 10,

this will not change the best value of p = 0.2% and β = 1.0 but will give R∼10.5 which produce

unphysical result for β/R ∼ 0.095. Therefore this cannot be the correct scenario for Nb3Sn. Such

fitting results, together with experiment measurement of laser energy absorption are consistent

with previous studies on BCS SCs such as NbN, whose 800nm energy absorption have been shown

to match BCS condensation energy quite well. RT model analysis again confirms the ”Quanutum-

limit” energy transfer in Nb3Sn superconductor.

The different fitting parameters for Nb3Sn can be readily observed in pump-probe traces. After

fs photoexcitation, Nb3Sn reaches the saturation QPs density at much shorter time compared to

NbN and MgB2. Quantitatively, at optical fluence corresponding to 10% pair breaking, Nb3Sn

takes 4ps to reach the peak of QPs density, an order of magnitude faster than NbN (20ps) (54) and

MgB2 (40ps) (53). Such behavior is consistent with the much larger pair breaking probability β in

Nb3Sn from fitting.

Table B.4 Comparison of the key parameters among NbN , MgB2 and Nb3Sn Supercon-

ductor

Sample MgB2 (53) NbN (54) Nb3Sn

Tc ∼39K ∼15K ∼16K

λ 0.7∼0.9 (132; 133) 1∼1.2 (134; 135) 1.8±0.15 (63)

SC gap ∆ ∆1 = 2.2meV ∆2 = 7.2meV ∆ = 3.07meV ∆ = 2.55meV

N(0) (spin cell eV)−1 0.7 (136; 137) 0.88 (54) 11.4 (61)

ωD 0.064eV (750K) (138) 0.31eV(363K) (139) 0.02eV(230K) (140; 141)

p 6% 9% ∼0.3%

R (ps−1 unit cell−1) 100±30 160±20 105±10

β (ps−1) 1/(15±2) 1/(6±1) 0.99

Rising time ∼40ps ∼20ps ∼4ps

β/R from fitting (unit cell−1) 0.00067 0.001 0.0095

β/R from eq.(10) (unit cell−1) 0.001 0.0007 0.0089

B.5.4 Energy absorption influence on the fitting results

The above fitting results is obtained under the condition that laser energy absorption is approx-

imate to BCS condensation energy Ω ∼ UBCS . Varying Ω only modifies the best fitting result of
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R, while it has no influence on p = 0.2% and β = 1.0. Assuming that the optical energy absorption

is Ω ∼ 10UBCS , this will give R∼10.5 and produces unphysical result for β/R ∼ 0.095, which is

10 times larger than the result given by Eq. 10. Therefore this cannot be the correct scenario for

Nb3Sn. On the other hand, β/R shows a very good agreement with Eq.10 for Nb3Sn, NbN and

MgB2, when 800nm energy absorption matches well with BCS condensation energy. With p = 0.2%

and Ω ∼ UBCS , RT model analysis again confirms the ”Quantum-limit” energy transfer picture in

Nb3Sn superconductor within fs excitation.

B.6 ”One Photon-One Cooper Pair” Quantum Limit Energy Transfer

The non-equilibrium Cooper pair breaking (CPB) responses in the superconducting state af-

ter fs optical excitation may be roughly divided into several temporally overlapping stages: (1)

quantum non-thermal regime during the optical pulse photoexcitation less than 10s of fs. This

initial temporal regime is not directly resolved experimentally, but sets up the initial condition

for the better understood ps dynamics that is directly observed in the present experiment. There

is no microscopic theory yet to fully account for this initial regime, which in our A15 system in-

volves coherence and non-thermal populations of both electrons and phonons. Indeed, the optical

phonon condensation in the SC ground state below the Martensitic transition temperature is per-

turbed by the photoexcitation process, leading to photoinduced electron-phonon dynamics. It is

premature to base our analysis of the experimentally observed non-thermal features that depend

on the initial condition on direct comparison with a microscopic non-equilibrium theory. Since

femtosecond pulses are shorter than the characteristic time scales of non-thermal SC dynamics,

we choose a phenomenological approach based on the “standard RT model” used to interpret the

ps dynamics in most SC experiments up to now. The portion of absorbed energy that initially

goes into quasi-particles (QP) excitations without lattice excitation is denoted as p = p0, while

the rest excites phonon populations both during and after pair-breaking. We thus characterize

phenomenologically the initial condition that triggers subsequently the incoherent dynamics after

the pulse. (2) Pre-bottleneck regime that accounts for the formation dynamics of the phonon
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bottleneck. Here the CPB kinetics can be based on the Rothwarf-Taylor (RT) model, which has

been extensively and successfully applied in various SC systems and can be derived microscopically

within a Markovia quasi-adiabatic approximation. Previous works have shown that the majority

of the absorbed photon energy (1 − p0) subsequently transfers to the phonon reservoir as high

frequency phonons (HFPs) and then continues to break Cooper pairs after the photoexcitations.

(3) Bottleneck recovery regime. The first two regimes are the focus on this paper.

We emphasize two points to reach our conclusions. (1) The portion of absorbed energy, p, to

break Cooper pairs compared to total energy absorption can be directly obtained from Rothwarf-

Taylor (RT) model simulations of the measured and better resolved ps data without further as-

sumption or measurement at fs time scales. We did not claim to have directly resolved this 10’s

fs regime here since it is technically challenging for our setup. On the other hand, this very early

10’s fs temporal regime creates the initial condition that triggers subsequently the incoherent pair

breaking after the pulse (100’s fs). We refer to it as pre-bottleneck regime immediately after or

during the optical pulse (10’s fs). What we claim here, based on hard evidence extracted from

our high quality data by following the same exact analysis as for most previous SC experiments,

is that, although the 10’s fs regime is not directly accessed in our and other experiments, it is still

possible to determine p = p0 from high signal-to-noise-ratio data obtained during the longer, 100’s

fs pre-bottleneck time regime. In our case, the extracted p from the RT model applied during ps

timescales is 0.33%, same as 2∆/(h̄ω) determined by SC gap and photoexcitation energy. Thus,

one high energy photon h̄ω basically breaks one low energy Cooper pair 2∆ during the coherent ex-

citations of optical pulse (the quantum SC quench regime) accompanied by phonon excitation. We

refer the observation of one photon-to-one pair, non-resonant energy transfer during the fs optical

excitations as quantum energy transfer. (2) In Nb3Sn, p is two orders of magnitude smaller than in

NbN , MgB2, as shown in Table III (supplementary), which provides the much needed comparisons

between these samples that was absent in the SC literature. (3) Our data indicates that phonon

emission is much more efficient during the QP de-coherence and population build-up immediately

after and during the pulse ∼30 fs. This is consistent with enhanced e-phonon coupling in Nb3Sn
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and the optical phonon condensation in the ground state below the Martensitic transition that

differentiates A15 from other simpler SCs. Note, however, that the exact microscopic dynamics of

quantum quench of superconductivity and build-up of QP population immediately after fs pulse

is still lacking. There are neither experimental results like ours nor theoretical discussions in this

regime.

Our result will motivate the development of such non-equilibrium quantum quench dynamics of

a strongly coupled e-lattice system with optical phonon condensation in the ground state. While

we could speculate about the non-equilibrium dynamics of electron-phonon interactions in the

coherent and very early non-thermal regimes, we did not attempt this here. Rather, we presented

experimental evidence about an unusual “initial condition” based on fits of our data at later times

using the conventional RT model also used to interpret the other experiments in the SC systems

without Martensitic transition that we compare with the A15 SCs during similar timescales.
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APPENDIX C. ADDITIONAL MATERIALS: CHAPTER 5

C.1 Experiment Setup

Optical pump-Terahertz (THz) probe ultrafast spectroscopy setup is driven by 1KHz Ti-Sapphire

regenerative amplifier. Single-crystalline Ba(Fe1−xCox)2As2 with cobalt substitutions of x=0.047

and 0.1 is mounted at 45 degrees to the incident light in liquid He-flow cryostat and cooled down to

4K. Sample is excited by 800nm, 35fs pump pulse to non-equilibrium transient state. Phase-locked

THz probe is generated by optical rectification through 1mm thick ZnTe crystal. By scanning

delay of gate pulse tgate, reflected THz E field oscillation is measured in time domain through EO

sampling. Only center part of 8mm diameter optical pump is used to ensure uniform excitation.

Beam diameter of optical pump, THz probe on sample are 2.9mm, 2.5mm respectively. Ultrafast

dynamics of the system is obtained by scanning the relative time delay tpp between pump and

probe.

Figure C.1 Experiment scheme of optical pump-THz probe measurement.
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C.2 THz Response Simulation of Superconductivity by Mattis-Bardeen

Theory

Due to the difficulty of extracting THz conductivity from reflection measurement, we simu-

late the THz response of superconductivity by Mattis-Bardeen theory and compare the results to

measured THz spectrum.

We assume a Drude response of Ba(Fe1−xCox)2As2 at normal state, with plasma frequency

ωp/(2πc) = 12000cm−1 and scattering rate 1/τ = 3× 1013s−1 (142). Despite the slightly different

ωp and 1/τ of various cobalt doping samples, simulation results are not sensitive to the choice of

Drude parameters. According to Drude model expression, we can generate optical conductivity

σ̃(ω) = σ1(ω) + iσ2(ω) at normal state as:

σN1 (ω) =
ω2
P τ

4π

1

1 + (ωτ)2
(C.1)

σN2 (ω) =
ω2
P τ

4π

ωτ

1 + (ωτ)2
(C.2)

where σN1 and σN2 are real and imaginary part of optical conductivity at normal state.

Mattis-Bardeen theory describes the low frequency conductivity of dirty limit superconductor

(127). Given the SC gap ∆ and temperature T , conductivity ratio between SC and normal state

can be calculated by the following integral. When h̄ω/∆ < 2, we have:

σSC1 (ω)

σN1 (ω)
=

2

h̄ω

∫ +∞

∆

E2 + ∆2 + h̄ωE

(E2 −∆2)((E + h̄ω)2 −∆2)
·

[f(E, T )− f(E + h̄ω, T )]dE,

σSC2 (ω)

σN1 (ω)
=

1

h̄ω

∫ ∆

∆−h̄ω

E2 + ∆2 + h̄ωE

(E2 −∆2)((E + h̄ω)2 −∆2)
·

[1− 2f(E + h̄ω, T )]dE,

(C.3)

And when h̄ω/∆ ≥ 2, we get:
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σSC1 (ω)

σN1 (ω)
=

2

h̄ω

∫ +∞

∆

E2 + ∆2 + h̄ωE

(E2 −∆2)((E + h̄ω)2 −∆2)
·

[f(E, T )− f(E + h̄ω, T )]dE

+
1

h̄ω

∫ −∆

∆−h̄ω

E2 + ∆2 + h̄ωE

(E2 −∆2)((E + h̄ω)2 −∆2)
·

[1− 2f(E + h̄ω, T )]dE,

σSC2 (ω)

σN1 (ω)
=

1

h̄ω

∫ ∆

∆−h̄ω

E2 + ∆2 + h̄ωE

(E2 −∆2)((E + h̄ω)2 −∆2)
·

[1− 2f(E + h̄ω, T )]dE,

(C.4)

in which ω is photon energy, f(E, T ) is the Fermi-Dirac distribution function. σSC1 and σSC2 are

real and imaginary part of conductivity at SC state as function of ω and T . Here we reproduce the

full response function at both normal and SC state.

By knowing σ1(ω), σ2(ω), complex optical index of the material is:

Ñ(ω) =
√
ε̃(ω) =

√
1 + i

4π

ω
σ̃(ω) (C.5)

THz reflection spectrum of materials at 45 degrees at polarization parallel to sample plane can be

simulated by Fresnel equation:

r̃‖ =
Ẽr(ω)

Ẽin(ω)
=
Ñ2 cosφ− µ1(Ñ2 − sin2 φ)1/2

Ñ2 cosφ+ µ1(Ñ2 − sin2 φ)1/2
(C.6)

in which permeability µ1 = 1 for optical frequency and φ = π/4 is the incident angle.Given the

incident THz wave Ẽin(ω), we are able to compute complex reflected THz spectrum at normal

ẼNr (ω) and SC state ẼSCr (ω). In experiment, Ẽin(ω) is the complex spectrum obtained from

time domain incident THz wave Ein(t) by Fourier transform. In reference measurement, Ein(t) is

recorded by placing a 100% reflector like gold mirrors at the sample position.

The ratio ẼSCr (ω)/ẼNr (ω) is plotted in Fig. 5.1(c). By inverse Fourier transform, we can get

reflected THz waveform ENr (t) and ESCr (t) in time domain.

In the simulation of transient THz reflection after photoexcitation, we assume that optical

pump completely quenches SC condensate within penetration depth around 100nm. Considering the
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penetration depth mismatch between THz and optical light, Fresnel equation is replaced by transfer

matrix of stratified medium (9). Similarily, EPPr (t) is reproduced conductivity spectrum at SC and

normal state σ̃SC(ω) and σ̃N (ω). Pump induced change is calculated by ∆Er(t) = EPPr (t)−ESCr (t).

Inset of Fig. 5.2(a) shows the spectrum of pump induced change ∆Er(ω) after Fourier transform.

Pump induced change ∆Er is more than two orders of magnitude smaller than Ein

C.3 Optical conductivity extraction from THz reflection measurement

The extraction of optical conductivity is essentially the reverse of simulation procedure dis-

cussed in the previous section. Despite great similarities, extracting optical conductivity from THz

reflection proves more challenging than transmission measurement. In the experiment, complex

reflection ratio is measured, which is function of σ̃(ω).

r̃‖ =
Ẽr(ω)

Ẽin(ω)
∼ f(σ̃(ω)) (C.7)

Various algorithm can be used to solve for σ̃(ω) from r̃‖.

First challenge originates from reference measurement. To achieve high accuracy, reflection

surface of reference has to exactly match sample surface, which is extremely difficult in experiment.

Few µm deviation of reflection plane greatly modifies both phase and amplitude of r̃, leading to

large errors in σ̃(ω) spectrum, and even unrealistic results.

1.0

0.5

0.0

-0.5

E
T

H
z
 (

a.
u.

)

86420
tgate (ps)
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 Ein 

 En     ESC  

 ∆Er 

Figure C.2 Simulated THz time domain measurement of SC ESC(t) (blue) and normal

state EN (t) (red) in reflection geometry under incident wave Ein(t) (grey).

∆Er(t) in green line is the difference between EN (t) and ESC(t).
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Second problem is related to sample we studied here, iron pnictide superconductor. In our

study, Ba(Fe1−xCox)2As2 has reflection close to 100% across Tc. Efficient extraction, on the other

hand, requires significant difference between reference and sample measurement. Simulated static

THz reflection is shown in Figure C.3, in which Ein, ESCr and ENr overlaps with each other. This

proves, on the other hand, that the ultrafast pump-probe measurement with much higher sensitivity

is a powerful tool to study quantum dynamics and phase competition physics.

C.4 Comparison of SC Quench Dynamics Between Thin Film and

Single–Crystal Samples

Figure C.1 shows our optical pump-THz probe measurement on a thin film optimally doped

Ba(FexCo1−x)2As2 sample. Sample thickness is 60 nm, which is below the penetration depth

of both 1.55 eV and THz frequency light. This guarantees the uniform excitation of the entire

sample probed by the transmitted THz wave. By comparing the fluence dependence of ∆E/E

between the single crystal and thin film samples, we find a striking similarity that confirms the

robust microscopic origin of the observed very slow SC quench and long–lived non–equilibrium

state as well as the different fluence dependence between short and long times. In addition, in the

thin film sample, we were able to extract the frequency dependence of the THz conductivity in

a transmission measurement, which we plotted in the insets of Figure C.1. We compare the long

time conductivity following SC quench above fluence threshold with the normal state conductivity

and find that they are identical. The pump-induced changes measured in the thin film sample as a

function of fluence clearly show a crossing between the curves at short and long times, at a fluence

of 4µJ/cm2. Above this fluence, the SC order parameter at long times (350ps) is smaller than

the order parameter at short times (30ps). This behavior of the thin film sample is very similar

to one measured in the single crystal sample, Figure 5.4(a) in the main text. The fact that very

different thin film and bulk samples show the same behavior excludes an alternative explanation of

our results in terms of penetration depth mismatch or heat diffusion. Also, as shown in the inset

(bottom left) the pump-probe signal disappears above Tc, which correlates the observed nontrivial
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pump-induced dynamics with the superconductivity. The static (equilibrium) conductivity (top

right) below Tc shows a 1/ω peak in σ2 and a suppressed σ1 below the SC gap, consistent with

the existence of a SC condensate delta-function peak at zero frequency. Figure C.1 displays very

similar spectral features in σ1 and σ2 between the normal and post-pump states at 350ps. This

result indicates that, after long times, the SC condensate can be quenched non–thermally above a

fluence threshold, as predicted by our theory when the effect of e-h correlations among the QPs is

included. On the other hand, the measured SC condensate remains finite at short times ∼30 ps at

all fluences, consistent with BCS behavior and uncorrelated photoexcited QP populations.
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Figure C.3 THz measurement of a 60nm thin film optimal doped Ba(FexCo1−x)2As2 at

short (30ps) and long (350ps) times after 1.55eV, 40fs photoexcitation. Inset

(bottom): pump-probe signals at various temperatures disappear above Tc at

22K. Inset (top): static and time-resolved complex conductivity at 4K, 24K

and non-equilibrium state at 350ps after pump.
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C.5 Many-body Theory of Excitonic SDW Correlation Formation

Hamiltonian

In this section we provide a brief overview of our microscopic theory, with full details and further

calculations to be presented elsewhere. We use the simplest model Hamiltonian believed to give a

good qualitative description of the competition between SC and SDW order in the iron pnictides

(42; 82):

H = H0 +H∆ +Hm . (C.8)

The non-interacting part of the Hamiltonian describes the e and h Fermi sea pockets predicted by

the bandstructure:

H0 =
∑
k,σ

[ξc(k)c†k,σck,σ + ξf(k)f †k,σfk,σ] . (C.9)

We include only one circular hole-like band at the Γ-point, with dispersion ξc(k) = ξc,0 − h̄2k2

2mc
− µ,

and one elliptical electron-like band with dispersion ξf(k) = h̄2k2x
2mfx

+
h̄2k2y
2mfy

− ξf,0 − µ close to the

Q0 = (π, 0)/(0, π) pocket (42; 82). These electron and hole energy dispersions are determined by

effective masses mc/f , energy offsets ξc/f,0, and chemical potential µ. The operators f †k,σ (c†k,σ)

create a carrier with crystal momentum h̄(k−Q0) (h̄k) and spin σ in the electron-like band near

Q0 (hole-like band close to the Γ-point). The SC pairing interaction (42) is given by

H∆ = VSC

∑
k,k′

[
c†k,↑c

†
−k,↓f−k′,↓fk′,↑ + h.c.

]
, (C.10)

with interaction magnitude VSC. Here we only include the pair hopping between the two pockets (42;

82), which is believed to be the dominant interaction producing s+− SC pairing (143). Besides

this SC interaction, the low energy properties depend on the magnetic interaction in the SDW

channel (42)

Hm = −Vm

2

∑
k,p,q

S†z(p,q)Sz(k,q) ,

Sz(k,q) =
∑
σ

σ c†k,σfk+q,σ , (C.11)
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where Vm describes the strength of the magnetic interaction. For simplicity we neglect the coupling

to phonons.

Ground-state configuration

Following previous works, the equilibrium SC properties can be described by treating the above

Hamiltonian Eq.(C.8) in the mean-field approximation (42; 82):

HMF
∆ = −

∑
k∈W

[∆cc−k,↓ck,↑ + ∆ff−k,↓fk,↑ + h.c.] , (C.12)

where the SC order parameters ∆c and ∆f are given by (42)

∆c = −VSC

∑
p∈W
〈f−p,↓fp,↑〉 ,

∆f = −VSC

∑
p∈W
〈c−p,↓cp,↑〉 . (C.13)

The sums in Eq.(C.13) only include the set W of wavevectors k with |ξλ(k)| ≤ h̄ωC, where ωC is

the cut-off frequency. Hartree-Fock decoupling of the magnetic interaction Eq.(C.11) gives (42)

HMF
m = −

∑
k,σ

σ
[
M f †k+q,σck,σ +M c†k,σfk+q,σ

]
(C.14)

with SDW order parameter (42)

M =
Vm

2

∑
k,σ

σ 〈c†k,σfk+q,σ〉 (C.15)

assumed to be polarized in the z-direction (144). The SDW order is assumed for simplicity to

form with a single momentum Q = Q0 + q between the electron and hole pockets, which becomes

commensurate for q = 0. We only include this momentum in our calculations here. The mean-

field Hamiltonian HMF = H0 + HMF
SC + HMF

m is diagonalized exactly, yielding the self-consistent

temperature–dependent SC and SDW gap equations that characterize the thermal equilibrium state

(42):

∆λ = −VSC

S

∑
k,j

Kλ
k,jtanh

(
Ej,k

2 kBT

)
,

M =
Vm

S

∑
k,j

Km
k,jtanh

(
Ej,k

2 kBT

)
, (C.16)
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with kernels

Kλ
k,j =

∆λ̄(E2
j,k −∆2

λ − ξ2
λ,k) +M2∆λ

2Ej,k(E2
j,k − E2

j̄,k
)

,

Km
k,j =

M (E2
j,k + ∆c∆f + ξc,kξf,k −M2)

2Ej,k(E2
j,k − E2

j̄,k
)

,

λ̄ =


c if λ = f

f if λ = c

j̄ =


1 if j = 2

2 if j = 1

and excitation energies

(
E(j=1,2),k

)2
=

1

2

(
Γk ±

√
Γ2
k + Ωk + Ω̃k

)
,

Γk = 2M2 + ∆2
c + ∆2

f + ξ2
c (k) + ξ2

f (k + q) ,

Ωk = −4
(
ξ2

c (k) + ∆2
c

) (
ξ2

f (k + q) + ∆2
f

)
,

Ω̃k = 8M2

(
∆c∆f + ξc(k)ξf(k + q)− M2

2

)
. (C.17)

To compute the equilibrium state, we solved the above mean-field gap equations self-consistently

for given equilibrium chemical potential µ determined by the level x of Co doping. While the

above equations may also be used to describe a quasi–thermal photoinduced state characterized by

time–dependent temperature and chemical potential, the main effects of interest here come from

non–thermal deviations from such quasi–thermal state, which occur prior to thermalization of the

photoexcited QPs between the Fermi sea pockets.
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Non-thermal dynamics

To study the photo-excited incoherent dynamics that govern our experiment, we first introduce

a basis of Bogoliubov QPs, defined by the transformation

ck,↑ = ukα
†
k − vkβk + ūkγ

†
k + v̄kδk ,

c†−k,↓ = vkα
†
k + ukβk + v̄kγ

†
k − ūkδk ,

fk+q,↑ = wkα
†
k + xkβk + w̄kγ

†
k − x̄kδk ,

f †−k−q,↓ = xkα
†
k − wkβk + x̄kγ

†
k + w̄kδk . (C.18)

Here, uk, vk, wk, xk, ūk, v̄k, w̄k, and x̄k are coherence factors that depend on the instantaneous

SC and SDW order parameters. We include for simplicity only a single momentum q in H∆ and

Hm as discussed above. Since we are interested in SDW excitonic state formation, we consider the

full inter–pocket SDW interaction Eq. (C.11) without factorization, which introduces relaxation

driven by the inter–band interaction. On the other hand, the SC interaction is treated within the

mean-field approximation for simplicity.

Substituting Eq.(C.18) into the above Hamiltonian and eliminating the off–diagonal quadratic

contributions, we transform the Hamiltonian in the QP basis for given order parameters ∆c, ∆f

and M :

HBCS = H0 +HMF
∆

=
∑
k

[
R−k

(
α†kαk + β†kβk

)
+R+

k

(
γ†kγk + δ†kδk

)]
, (C.19)

where we introduced

R−k = ξc(k)
(
v2
k − u2

k

)
+ ξf(k + q)

(
x2
k − w2

k

)
− 2 (ukvk∆c + xkwk∆f) ,

R+
k = ξc(k)

(
v̄2
k − ū2

k

)
+ ξf(k + q)

(
x̄2
k − w̄2

k

)
− 2 (ūkv̄k∆c + x̄kw̄k∆f) . (C.20)
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and

Hm = −Vm

2

∑
k,p

[
2 lkmp

(
α†pαp + β†pβp

)
+2 lkpp

(
γ†pγp + δ†pδp

)
+mkmp

(
α†pαp + β†pβp

)(
α†kαk + β†kβk

)
+pkpp

(
γ†pγp + δ†pδp

)(
γ†kγk + δ†kδk

)
+pkmp

(
α†pαp + β†pβp

)(
γ†kγk + δ†kδk

)
+ (rkrp + sksp) S̃†z(p)S̃(k)

+ (r̄kr̄p + s̄ks̄p) S̄†z(p)S̄(k)
]

(C.21)

with coherence factors

lk = 2 (ukwk + ūkw̄k) , mk = (ukwk + vkxk) ,

pk = (ūkw̄k + v̄kx̄k) , rk = vkw̄k + v̄kwk ,

sk = (ūkxk + x̄kuk) , r̄k = v̄kxk + ukw̄k ,

s̄k = vkx̄k + ūkwk. (C.22)

The last two lines in Equation (C.21) describe the deviations from the mean field Hamiltonian

and involve four QP operators (two pairs of QPs). The collective effects in the SDW channel are

described by the QP pair operators

S̃z(k) = βkγk + αkδk , S̄z(k) = β†kδk − α
†
kγk . (C.23)

Since we are interested in long timescales after dephasing of any coherences among QPs, we only

keep the QP number–conserving terms in Eqs. (C.19) and (C.21) and neglect any photoinduced

coherence among QPs, 〈S̃z(k)〉 = 〈S̄z(k)〉 = 0. The transformation of the SC and SDW gap
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equations in the QP basis then yields

∆c = −VSC

∑
k

[
ukvk

(
1− nαk − n

β
k

)
+ūkv̄k

(
1− nγk − n

δ
k

)]
,

∆f = −VSC

∑
k

[
wkxk

(
1− nαk − n

β
k

)
+w̄kx̄k

(
1− nγk − n

δ
k

)]
,

M = −Vm

2

∑
k

[
2 lk −mk

(
nαk + nβk

)
− pk

(
nγk + nδk

)]
, (C.24)

where we introduced the QP distributions

nαk = 〈α†kαk〉 , nβk = 〈β†kβk〉 , nγk = 〈γ†kγk〉 ,

nδk = 〈δ†kδk〉 . (C.25)

As in the simple BCS theory, the excitation of QP populations quenches both the SC and the SDW

order parameters. We simplify the problem by assuming that, after the initial sub–ps QP relaxation,

the QP distributions are all similar for high frequency optical pump excitation at ∼1.5eV: nαk ≈

nβk ≡ n
αβ
k and nγk ≈ n

δ
k ≡ n

γδ
k . The time evolution of the SC and SDW order parameters monitored

by the THz probe is determined by the time evolution of the above QP populations, which we

describe by deriving equations of motion using the full above Hamiltonian. The scattering processes

determined by Hm lead to QP relaxation described by

∂

∂t
nαβp =

Vm

h̄
Im
∑
k

[
(rkrp + sksp)Ck,p

SDW,1

+ (r̄kr̄p + s̄ks̄p)Ck,p
SDW,2

]
,

∂

∂t
nγδp =

Vm

h̄
Im
∑
k

[
(rkrp + sksp)Ck,p

SDW,1

− (r̄kr̄p + s̄ks̄p)Ck,p
SDW,2

]
. (C.26)

The higher density matrices CSDW that appear on the right-hand side of the above equations

involve four QP operators and are defined after subtracting all factorizable contributions by using
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a cluster-expansion as in (? ):

Cp,k
SDW,1 = ∆〈S̃†z(k)S̃z(p)〉 , Cp,k

SDW,2 = ∆〈S̄†z(k)S̄z(p)〉 . (C.27)

For CSDW=0 we recover the mean-field results, while the four–QP density matrices describe correla-

tion build–up and scattering among QPs. Such processes modify the QP distributions as compared

to mean field, which leads to time–dependent SC order parameter quench. The equations of motion

of CSDW describe the time evolution of correlations among the photoexcited QPs and are derived

similar to Ref. (? ):

ih̄
∂

∂t
Cp,k

SDW,1 =
(
ε−p + ε+

p − ε−k − ε
+
k

)
Cp,k

SDW,1 + Sp,k
1

+ 2Vm

(
1− nαβk − n

γδ
k

)∑
l

(rkrl + sksl)C
p,l
SDW,1

− 2Vm

(
1− nαβk − n

γδ
k

)∑
l

(rprl + spsl)C
l,k
SDW,1

+Dp,k
1 + Tp,k

1 , (C.28)

ih̄
∂

∂t
Cp,k

SDW,2 =
(
ε−p − ε+

p − ε−k + ε+
k

)
Cp,k

SDW,2 + Sp,k
2

+ 2Vm

(
nαβk − n

γδ
k

)∑
l

(r̄kr̄l + s̄ks̄l)C
p,l
SDW,2

− 2Vm

(
nαβk − n

γδ
k

)∑
l

(r̄pr̄l + s̄ps̄l)C
l,k
SDW,2

+Dp,k
2 + Tp,k

2 , (C.29)

where the QP energies are given by

ε−k = ξc(k)
(
v2
k − u2

k

)
+ ξf(k + q)

(
x2
k − w2

k

)
− 2 (ukvk∆c + xkwk∆f)− 2 (ukwk + vkxk)M ,

ε+
k = ξc(k)

(
v̄2
k − ū2

k

)
+ ξf(k + q)

(
x̄2
k − w̄2

k

)
− 2 (ūkv̄k∆c + x̄kw̄k∆f)− 2 (ūkw̄k + v̄kx̄k)M . (C.30)
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The usual scattering among individual QPs is described by the source terms

Sp,k
1 =

4Vm

S
(rkrp + sksp)

[
nαβp nγδp (1− nαβk )(1− nγδk )

−nαβk nγδk (1− nαβp )(1− nγδp )
]
, (C.31)

Sp,k
2 =

4Vm

S
(r̄kr̄p + s̄ks̄p)

[
nαβk nγδp (1− nαβp )(1− nγδk )

−nαβk nγδp (1− nαβp )(1− nγδk )
]
. (C.32)

Sp,k
1,2 have the typical form describing Boltzmann scattering with in- and out-scattering contribu-

tions. The first line in Eqs. (C.28) and (C.29) describe relaxation among individual quasi–particles

within the Born approximation, without any excitonic correlation. Such perturbative Born scat-

tering approximation does not change the behavior at long 100’s ps times.

The next two lines on the rhs of Eqs. (C.28) and (C.29) give the most important contributions

here. As soon as non–thermal QP populations are excited in the e and h Fermi sea pockets, Sp,k 6=0

and the above equations describe screening build–up and formation of spin–excitons among the

laser-induced QPs. Renormalization of the QP energies and screening-type effects are described by

the remaining two-particle contributions Dp,k
1,2 . The coupling to three-particle correlations, Tp,k

1,2 ,

introduces relaxation of the SDW excitonic correlation.

Cp,k
SDW,2 is mostly significant in the strong excitation regime, as it requires an appreciable imbal-

ance between QP distributions such that (nαβk −n
γδ
k ) is non-vanishing. In contrast, Cp,k

SDW,1 becomes

large already at low QP densities. Here we assume that high–frequency pump excitation results in

similar nonthermal densities of α-, β- and γ-, δ- QPs, so we neglect Cp,k
SDW,2. More details on the

full theory will be presented elsewhere.

Generalized Wannier Equation for Describing the Excitonic Correlation

Following an initial temporal regime of ultrafast SC gap quenching, the QP distributions nαβk

and nγδk change adiabatically with time, so we seek stationary solutions of Eq. (C.28). The form

of these equations of motion suggests the transformation of the SDW correlation Cp,k
SDW,1 into an
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excitonic basis (? ) defined by the wavefunction φr
ν,q. The latter is given by the generalized

Wannier equation

(
ε−p + ε+

p

)
φr
ν(p)−

(
1− nαβp − nγδp

)∑
k

Vk,pφ
r
ν(k)

= Eν φ
r
ν(p) , (C.33)

where the Coulomb matrix element depends on the QP coherence factors:

Vk,p = 2Vm [(ūkxk + x̄kuk) (ūpxp + x̄pup)

+ (vkw̄k + v̄kwk) (vpw̄p + v̄pwp)] . (C.34)

It is then convenient to introduce the excitonic operator

Xν =
∑
p

φl∗
ν (p)S̃z(p). (C.35)

Unlike for phonons, the commutation relations of this composite exciton operator have non-bosonic

corrections due to Phase Space Filling arising from the fermionic character of the QPs involved.

By transforming from uncorrelated QPs to the excitonic basis

S̃z(p) =
∑
ν

φr
ν(p)Xν (C.36)

we describe the correlations of interest in terms of the above-defined spin-excitons:

Cp,k
SDW,1 =

∑
ν,ν′

[φr
ν(k)]? φr

ν′(p) ∆〈X†νXν′〉 ,

∆〈X†νXν′〉 =
∑
k,p

φl
ν(k)

[
φl
ν′(p)

]?
Cp,k

SDW,1 . (C.37)

The coupling of the QP distributions to the excitonic amplitude in Eq. (C.33) yields a non-hermitian

eigenvalue problem, so we obtain left- and right-handed eigenfunctions φr,l
ν,q. These describe both

bound and scattering solutions, where the latter correspond to unbound QP pairs whose properties

are modified by the magnetic interaction. The above wavefunctions satisfy the orthogonality and

completeness relations∑
p

[
φl
ν(p)

]?
φr
ν′(p) = δν,ν′ ,

∑
ν

[
φl
ν(p)

]?
φr
ν(p′) = δp,p′ . (C.38)
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To simplify the problem for our purposes here, we assume relaxation to the lowest spin–exciton

state φp ≡ φr
ν=0(p) and only retain this contribution to Eq. (C.37). As a result,

Cp,k
SDW,1 = φ?pφk , (C.39)

where we have absorbed ∆〈X†ν=0Xν=0〉 into φp.

In the incoherent long–time regime and for Cp,k
SDW,1 dominating over Cp,k

SDW,2, we obtain Eq. (5.2)

from an exact relation between the traces of the corresponding density matrices. The coupled

Eqs. (5.2) and (C.33), together with the order parameter equations (C.24) and coherent factor ex-

pressions, yield a self-consistent calculation of the many-body state defined by (φp, np,∆c,∆f ,M).

This result corresponds to an adiabatic solution of the equations of motion and describes the

non-equilibrium state reached after formation/buildup of SDW correlation and before the system

thermalizes via scattering across the Fermi sea pockets.

Numerical Calculations

In our numerical calculations presented in Figure 5.4, we first computed the thermal ground

state configuration by solving the SDW and SC gap equations (C.16) self-consistently for a given

doping level. We then solved Eqs. (5.1) and (5.2) together with the order parameter equations

iteratively until convergence was reached. The energy eigenvalue E determines the total QP den-

sity ρ = 1/S
∑

k nk and thus corresponds to excitonic corrections to the chemical potential. In

all numerical calculations we used typical parameters of Ba(Fe1−xCox)2As2, which yield a good

qualitative agreement with the experimentally observed doping dependence of the SC and SDW or-

ders (42). To model the photoinduced initial condition immediately after the initial phonon–induced

ultrafast SC gap quench following photocarrier relaxation, we assume that the excited QPs have

relaxed into the different pockets and describe their distributions for simplicity by Fermi–Dirac

distributions

nα,βk =
1

1 + exp
(
ε−k /kBTα,β

) ,
nγ,δk =

1

1 + exp
(
ε+
k /kBTγ,δ

) (C.40)
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which determine the initial condition to our time–dependent calculation. The temperatures Tα,β

and Tγ,δ are obtained from the total QP densities

ρα,β =
1

S

∑
k

nα,βk , ργ,δ =
1

S

∑
k

nγ,δk . (C.41)

In the actual calculations presented here, Tα,β and Tγ,δ were chosen such that the total densities of

the different QPs are the same, i. e. ρ ≡ ρα,β = ργ,δ. However, our conclusions do not depend on

how we describe the initial QP distributions, which form following relaxation of the photocarriers

from high energy energy states populated by the pump that are not well known.

C.6 Build–up of Excitonic Correlation

SDW order implies e–h coherence between different Fermi sea pockets. In the SC ground

state, such coherences are nonzero only in the underdoped regime. In contrast, they vanish in the

overdoped regime. They are described by the off–diagonal elements of the one–particle density

matrix, which deviate from their equilibrium values immediately after laser excitation. However,

they relax within few ps or sooner, similar to the dynamics of the photoexcited excitonic coherent

amplitudes in semiconductors (optical polarization dephasing).

In semiconductors, excitonic coherence 〈X〉 characterizes a quantum superposition of electron

and hole states. Excitonic coherence 〈X〉 must be distinguished from incoherent excitonic corre-

lation characterized by two-particle density matrices of the form 〈X†X〉 − 〈X†〉〈X〉 (? ). Such

“excitonic fluctuations” are of main interest here, induced by inter–pocket e–h interactions.

Since for high energy pump excitation the populations of the low energy e–h eigenstates that

depend strongly on the interactions are initially small relative to the population of the higher energy

continuum states, excitonic correlation among QPs will build up with time after relaxation to lower

energies. 〈X†X〉 does not require an e–h coherent superposition, only residual interactions among

excited QPs. Our experiment shows the existence of a long-lived metastable SC state with quenched

SC gap, which is consistent with QP populations that have not yet relaxed back to equilibrium

after 100’s of ps. We argue that the existence of Fermi sea pockets with large momentum difference

may be responsible for this long lifetime, which allows QP correlation to build–up.
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Similar to the standard RT model, many calculations of excitonic correlation formation in

semiconductors use three-particle models, where electrons, holes, and excitons are treated as distinct

QPs. These models are based on rate or Boltzmann equations for distinct populations of fermionic

QPs (e’s and h’s) and bosons (excitons). In semiconductors, it is known that multi-particle rate

equations similar to the RT model are inadequate to describe the experimental observations (?

; 86). Discrepancies arise because excitons are not perfect bosons and phase space filling effects

are important. While the RT model considers bosons that are distinct from the SC QPs, the

main nonlinearities of interest here come from additional fermionic correlations when the same

indistinguishable electrons participate in SC condensate, uncorrelated QPs, and correlated e–h

excitations. The importance of excitonic correlation build–up in ultrafast pump–probe experiments

during the incoherent non–thermal temporal regime is well established in semiconductors but not

observed in multi-band SCs up to now. Inter–pocket interaction between QPs leads to formation

of a quasi–stationary correlated e–h state after some time, characterized by the build–up of 〈X†X〉

while 〈X〉 decays back to equilibrium (85).
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APPENDIX D. ADDITIONAL MATERIALS: CHAPTER 6

D.1 Equilibrium THz electrodynamics in Nb3Sn

The real and imaginary parts of the conductivity, σ1(ω) and σ2(ω), measure the dissipative and

inductive responses of the studied material, respectively, as shown in Fig.S1. At 4K, the SC state

shows a vanishing σ1(ω) below 2∆ = 5.1meV and a divergent σ2(ω) towards zero frequency. The

σ1(ω) signals at low frequencies below 3 meV originates from intraband absorption of thermally

excited Bogoliubov quasi-particles, while the residual condensate density ns is proportional to the

divergence of σ2(ω). All these features are replaced by a response of weakly interacting QPs above

16K, i.e. above Tc.
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Figure D.1 Static THz conductivity spectra of (A) σ1(ω, T ) and (B) σ2(ω, T ) from 4K to

16K.

By fitting the normal state σ1(ω) and σ2(ω) simultaneously with the Drude model, we obtain a

plasma frequency of ωp=1.24eV and a scattering time h/τ=8.27meV for our Nb3Sn film.We obtain

the carrier density n from plasma frequency:

ωp =

(
4πne

m

) 1
2

(D.1)
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We get n = 1.11 × 1021cm−3. m and e represent the electron mass and charge. We obtain Fermi

vector kF and Fermi velocity vF as following:

kF =
3
√

3π2n = 3.2× 107cm−1 = 0.32Å−1 (D.2)

vF =
h̄kF
m

= 0.369× 108cm/s (D.3)

These values are consistent with a similar calculation based on Nb3Sn lattice structure.

D.2 A classical circuit model analysis of the THz pump-induced supercurrent

The light-driven supercurrent in Nb3Sn superconductor can be obtained using an intuitive

circuit model with inputs such as the experimentally measured THz pulses. The THz field is

represented by a pulsed voltage source Vs(t), calculated by using the THz driving E-field penetrating

into the sample, Ein, and the pump beam diameter dp: Vs = Ein · dp. Ein can be estimated by

using the optical index of the sample ns and the pump E field E0 as:

Ein ∼ E0 ·
2

1− ns
= 0.01E0 (D.4)

From the static measurement in Fig. S1, the optical index n is around 200, which gives Ein ∼

1.1kV/cm.

The impedance of the sample is calculated from the static conductivity spectrum as:

Ztotal = Y −1
total = (σ1

S

d
+ iσ2

S

d
)−1 (D.5)

where S = dp · ts is the cross section area of current flow. ts = 20nm is the sample film thickness.

The sample impedance in Fig. S2 manifests as inductance linearly increasing with frequency and

negligible resistance below 2∆SC , as for an ideal inductor. With such simplifications, the THz pulse

induced super-current is simulated by a circuit that consists of a perfect inductor in series with a

very small resistor under pulsed power supply, as shown in Fig. S3. The supercurrent flow in the

circuit is obtained by solving the time dependent differential equation:

Vs(t) = L · ∂I(t)

∂t
+ I(t) ·R (D.6)
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Figure D.2 (A) and (B) Real and imaginary of the optical conductivity σ1(ω), σ2(ω) at 4K

and 16K. (C) Material impedance calculated by using the sample geometry,

pump beam size and Terahertz conductivity in (A) and (B).

Fig. S4 shows the current I(t) obtained from this simulation. During the excitation, the current

is dominated by the inductive response that is delayed by π compared to the applied voltage. After

excitation, the DC current persists for hundreds of ps for the asymmetric effective THz pump

field shown in Fig. 3f (main text). However, a DC current is absent in the simulation when

using a symmetric Gaussian excitation waveform with similar pulse energy, center frequency and

bandwidth. A residual current driven by a pulsed voltage source can be understood as follows.

Due to the asymmetric nonlinear coupling, finite energy is stored into the inductor during the

Figure D.3 Circuit model for THz-induced supercurrent in Nb3Sn.
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excitation and is slowly dissipated via the very small resistor when Vs = 0. This simple toy model

successfully reproduces the THz induced DC supercurrent required for a gapless SC state and

symmetry breaking for observing the forbidden pseudo-spin modes.

We compare the residual current to the gapless SC current and the SC critical current in the

following section. The minimum velocity and current required to achieve the gapless SC state are

vgl = ∆SC/pF = 1.09 × 105cm/s and Jgl = ensvgl = 9.73 × 106A/cm2. The superfluid density

ns = 5.58× 1020cm−3 is obtained by fitting the low frequency σ2(ω) with 1/ω divergence.

Table D.1 Material properties of Nb3Sn.

Upper critical field Hc2 coherent length ξ penetration depth λ GL parameter κ

26-30T 3.2nm 64nm 20

The SC critical current in our film sample is calculated from the critical magnetic field. From the

material properties of Nb3Sn listed in Table 1 (148), we calculate the GL parameter κ = λ/ξ = 20

and thermodynamic critical field Hc = Hc2/(
√

2κ) ∼ 1T . Due to reduced magnetization in thin

film samples, the critical field is enhanced by more than 10 times:

Hc‖ =
√

12Hcλ/ts = 11T (D.7)

The critical current of the Nb3Sn bulk crystal is reported around 106A/cm2 (149). Since Jc ∝ Hc,

it is a reasonable estimation that Jc‖ in the measured Nb3Sn film sample is around 1.1×107A/cm2,

which is slightly larger than vgl as expected. From the simulation results shown in Fig.S4, the

current during the excitation is dominated by the inductive response Jind = σ2 · Ein ∼ 2.6 ×

107A/cm2, which is two-orders of magnitude higher than the conductive part Jcon = σ1 · Ein ∼

4.4 × 105A/cm2. However, note that such high frequency currents cannot effectively quench the

condensate. The post-pulse DC current Jpost is around 2.7 × 106A/cm2, of the same order as Jgl

but smaller than critical current Jc. We conclude that our sample and excitation conditions satisfy

the requirements for observing light-induced SC and forbidden modes predicted by our theory.

However, an accurate determination of Jpost, considering the complicated physical processes like
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the ultrafast nonlinear response, phase competition, impurity scattering, etc is beyond the scope

of this crude model.
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Figure D.4 (A) Asymmetric (red) and symmetric (blue) THz drivings. (B) Corresponding

supercurrent produced by the toy model.

D.3 A quasi-equilibrium picture of the gapless superconducting state (Fig.

6.1b, main text)

BCS theory predicts a possible gapless SC state of a current carrying moving condensate.

Such state has vanishing pair breaking energy at certain momenta while it retains macroscopic

quantum coherence and perfect conductivity. Under a finite DC current, the energy dispersion

is shifted by momentum q, leading to an anisotropic excitation energy Ek ≈ E0
k + ~pk · ~vs where

E0
k =

√
(p2
k/2m− EF )2 + ∆2

SC . A condensate moving against a current has minimum excitation

energy Emin = ∆SC − pF · vs, at certain k points. At critical gapless speed vgl = ∆SC/pF , the pair

breaking energy drops to zero at these k-points, thus realizing a gapless superconductivity state. Fig.

1b (main text) plots QP energy dispersion of the fully-gapped equilibrium state (left) and the gapless

current-carrying state with critical condensate flow vs along x axis (right) with parameters of our

Nb3Sn samples described in prior sections. Please note that a much bigger value of ∆SC/EF =0.4,

instead of 0.002 in Nb3Sn, is used to better illustrate the gap closing effect in Fig. 1b (main text).

Realization of this state has proved to be challenging in equilibrium for experiment: the speed of

the moving condensate needs to be carefully set at a value right in-between the minimum speed

vgl required for gapless superconductivity and the condensate speed vc at critical current density
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Jc. A self-consistent solution of BCS theory shows that vgl is at most 1-2% percent below vc in

clean-limit SCs. The experimental realization of a supercurrent-carrying phase also needs to avoid

heating of electric contacts and scattering. In dirty-limit SCs,the Meissner state may break down

with increasing current or magnetic field before establishing this gapless state. Here we implement

a non-equilibrium manipulation scheme and coherent control of the Cooper pair momentum in

real time to succeed in driving long-lived gapless superconductivity up to 100’s ps timescales in

a sufficiently clean sample. The subcycle dynamical symmetry breaking leads to the discovery

of forbidden 3rd-order PSOs, Coulomb-enhanced strong 4th-order HHG nonlinearities, and drives

a long-lived gapless superconductivity state that is coherently controlled by the THz pulsed field

shape and amplitude. These are reproduced by a quantum kinetic nonlinear calculation of the

gauge–invariant density matrix for ps(t) 6= 0 without perturbative susceptibility expansions.

D.4 Third harmonic generation (THG) in Nb3Sn

In this section, we present the known third harmonic generation (THG) obtained from the 2nd

order pseudospin oscillations in our sample. A standard working principle for understanding the

quantum dynamics of a SC condensate coupled to an ac electric field, illustrated in Fig. 1a of

the main text, is Anderson pseudo–spin precession, ~sk(t) (arrows). This precession is driven by

quadratic coupling, O(A2) (green lines), between ~sk and the vector electromagnetic field potential

A(t):

d~sk
dt

= 2Bk(A(t),∆SC)× ~sk. (D.8)

The pseudo-magnetic field Bk has two components: (1) z-component Bz
k(t) = (εk− e

c
A+ε−k− e

c
A)/2,

which determines the coupling of the THz field A(t) and depends on the electronic band dispersion

εk; (2) perpendicular component B⊥k (t), which is determined by the SC off–diagonal coherence ∆SC

and its nonlinear modification by THz ultrafast excitation and periodic drive. Such a forced linear

harmonic oscillator model predicts coherent pseudo–spin oscillations (PSO) in THz pump-probe

signals, expected, at leading order, to occur at a frequency double that of the pump field, 2ωpump.

This contribution is linear in Bz = O(A2) and gives rise to third harmonic generation (THG)
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observed in single-pulse, nonlinear emission measurements. In addition, the equilibrium symmetry

of the SC state implies that all odd–order nonlinear responses to the coherent coupling of the THz

electric field, i.e., O(A2n−1) (n=1,2...), must vanish, including the linear (O(A)) response. For

example, a coherent PSO at three times the driving field frequency, 3ωpump, to be distinguished

from the THG emission, is forbidden by the symmetry of the BCS state, which consists of Cooper

pairs with zero momentum.

In Fig. S5, the optical gate pulse samples THz pump emission through Nb3Sn film without the

presence of probe pulse. In contrast to the THz pump-probe method discussed above, this essen-

tially measures the quasi-equilibrium response. A 3ω THG component is observed in the emission

spectrum, which can originate from SC amplitude fluctuations and/or Cooper pair excitations 4ω

and 5ω emission components from the 3rd and 4th order pseudospin oscillations are below experi-

mental sensitivity of the emission spectra yet, they are clearly observable in the THz pump-probe

measurement with higher sensitivity and less scattering as discussed in the next section. Here the

nonlinearity merges with the background of strong additional scattering contributions. It is not

practically possible to see the second harmonic peak, which is only 0.5 THz away from the fun-

damental, in such single-pulse experiment. It is there but masked by the main scattering peak as

compared to pump-probe.

D.5 Single-pulse emission vs. THz pump-probe

The forbidden and HH peaks are much harder to see in a linear or nonlinear emission experi-

ment with single pump beam, i.e., quasi-CW incoherent responses. This is the case in both from

the theoretical and experimental points of view. On the one hand, the emission signal is a mixture

of linear and nonlinear responses, where the former masks the latter, as already known from semi-

conductors. There, it was necessary to isolate the nonlinear effects in order to discover the new

physics. In addition, the large THz pump scattering background here masks the important effects

but has nothing to do with the current. In strong contrast, the two-pulse coherent pump-probe

responses measured here accomplish the following: (1) subtract the detrimental linear background
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Figure D.5 Pseudo-spin coherent oscillation spectra in pump-probe (a) and pump emission

measurements (b) using narrow band THz pump centered at 0.5THz through

Nb3Sn film at 4K.

by comparing pump on and off; and (2) two-pulse pump-probe signals are coherent and directional,

arising from interference in third order responses of two pulses. Therefore, these are cleaner experi-

ments similar to semiconductors, unlike for the third order responses measured with a single pulse.

This is well established in studies of coherent ultrafast dynamics of excitons in semiconductors,

where e.g. the new signals in the phase matching directions come from quantum interference of

two pulses and are much cleaner than in SHG and THG harmonic generation with single pulse.

In order to further substantiate the above statements from pure theory in the ideal case, we di-

rectly simulated the dynamics (Fig. S6a) and spectrum (Figs. S6c and S6e) of the total current jtot,

i.e. emission, and the corresponding dynamics (Fig. S6b) and spectrum of the pump-probe response
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(Figs. S6d and S6f) using experimental pulses in Fig. S8. To obtain the pump-probe response,

we computed the transmitted E-field of pump+probe pulse, Epp(t, τ), as function of electro-optical

sampling time t and pump-probe delay tau, as well as the transmitted electric field resulting from

the probe pulse, Eprobe(t), and the pump pulse, Epump(t, τ), alone. The nonlinear pump-probe re-

sponse is then defined in our calculation as ENL =Epump−probe-Epump-Eprobe. ENL/Eprobe is plotted

at fixed gate time t as function of pump-probe delay τ . The emission shows only one peak at the

pump frequency ωL due to the direct pump scattering given the scale presented, while the pump-

probe response shows all collective peaks at 1st-4th harmonics, fully consistent with the experiment

for the same pulse temporal profile. These further establish a direct connection between experiment

and theory that fully support the proposed picture of discovering the supercurrent moving quantum

state.

D.6 Effective asymmetric multi-cycle THz pump pulses

In the gauge invariant quantum kinetic theory simulation discussed below and in the main

text, we study the effects of strong and asymmetric THz pulse photoexcitation and the effects of

superfluid momentum ps(t), which dynamically breaks the symmetry of the BCS state. Please note

the effective driving asymmetry is determined by THz-induced nonlinear photocurrent sources and

spatial variations inside the SC during THz pulse propagation instead of free space THz waveform.

Our calculation predicts the strong nonlinearities and describes the physical picture. For the

input to our theory, we define the asymmetry of an effective input pulse with electric field Eeff

as η =
∫∞
−∞ dt E(t)/E(ω = ωL) = E(ω = 0)/E(ω = L) where E(ω) is the Fourier transformation

of E(t). In this way, η = 0 for a symmetric pulse driving, while an asymmetric pulse driving is

characterized by η 6= 0. The 0.5 THz (1.0 THz) multi-cycle experimental and theoretical pulses

have an asymmetry of η = 0.03 (η = 0.02), as shown in Fig. S7. As discussed in Fig. 2c (main

text), in order to approximately evaluate the role of nonlinear asymmetric coupling in experiment,

the effective nonlinear pulse integral
∫ t
−∞ dτ Eeff(τ) is computed by inputing the THz pump pulse

waveforms detected via electro-optic sampling in a <110> ZnTe crystal. To check whether the
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theoretical results depend on the details of the asymmetry used, we have tried different functional

forms for the input asymmetric pulse. The calculations show that the results for high-harmonic

generation as well as the non-equilibrium state after the pulse are qualitatively similar for different

asymmetric pulse shapes, as long as η of the pulses is the same. This indicates that the theoretical

results are robust and do not critically depend on the specific choice of functional form of the pulse,

but only on its asymmetry. They arise from dynamical symmetry breaking due to the introduction

of a preferred direction by the Cooper pair momentum, which can persist after the pulse due

to asymmetric driving-induced photocurrents. A quantitative modeling of the gauge-invariant

coupling of THz fields and superfluid momentum ps(t) need to include longitudinal responses from

spatial variations of the gap phase and chemical potential as seen in Eqs.(3) and (4) (method),

which will be explored elsewhere.

D.7 Multi-cycle vs. single-cycle pumping

The mechanism of light absorption in the material depends on the details of the pulse shape.

In more detail, the part of the pulse in frequency domain above 2∆ excites non-equilibrium quasi-

particle populations, while the portion below the gap drives time-dependent inductive currents. In

general, these two effects coexist in a strongly time-dependent system. To model the THz-driven

current, one has to take into account the strong time-dependence of the THz pulse and not just its

intensity as in an equilibrium calculation. For this purpose, we have developed the time-dependent

density matrix equation of motion theory, which takes both effects into account while satisfying

gauge invariance. As a result, both effects mentioned above contribute to the SC quench by the

THz pulse, which leads to a significant increase in the total nonlinearity and modifies simple quan-

tum quench results. In addition, the theory shows that sufficient lightwave acceleration of the

macroscopic Cooper pair state along a specific direction results in zero QP excitation energy in

specific k-points, even if the frequency is below the equilibrium energy gap.

Although the low-field single-cycle pulse excitations in Ref. (67) can also be used to minimize

the condensate quench, the post-quench states in this case still show the same very fast rise times
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during the pulse, as shown in the inset of Fig. 3c, even down to 7 kV/cm. The slow 100ps rise

time observed for the current-carrying state is not so much dependent on the excitation gap and its

quenching. It depends on the collective Cooper pair momentum in a moving condensate quantum

state, which makes the latter robust against scattering. The latter momentum depends on the pulse

asymmetry and not just on the pump intensity. All behaviors with single-cycle pulse pumping are

very different from the post-quench multi-cycle, supercurrent-carrying states observed. This result

is important, as it shows a path for driving non-equilibrium protected quantum states.

The differences in the conductivity are not as striking as in the dynamics. The similarities how-

ever are perfectly understandable, since the single-cycle pulse has broadband spectral components

that will give mixed responses, with some signatures of gapless SC in the conductivity. However,

that is only one of the features of the post-quench states and is not the dominant one. The direct

photon transitions exciting quasiparticles by quickly depleting the condensate clearly dominate

the sub-ps dynamics observed during the pulse in Ref. (67). This is distinctly different from the

supercurrent-flowing state observed here, which continues to evolve after the pulse and also leads to

new HH peaks. Therefore, only the multi-cycle sub-gap driven, supercurrent-carrying states allow

us to truly identify the existence of a gapless SC phase under minimal quenching of condensate

density. This also demonstrates why the pulse shape controls ∼100ps dynamics. Note that any

state with substantial condensate quench, such as the one observed in Ref. (67), will appear to

be “gapless”, e.g., the single-cycle quench at E field = 120 kV/cm and 155 kV/cm. However,

this is different from, e.g., 0.5 THz pumping (Figs. 3a and 3b) at E field = 78 kV/cm. There,

the non–equilibrium state is gapless, as seen by comparing σ1 with the normal state equilibrium

lineshape (gray line), despite a minimal light-induced change in the diverging σ2, i.e. minimum

change of condensate density but full quench of the SC gap. We also stress the difference between

energy gap in the excitation spectrum (E) and order parameter (∆SC) of a quantum state. Clearly,

the energy gap is not enough to characterize the properties of a quantum state, e.g SC is gap plus

Meissner effect. Here we distinguish between two different gapless non-equilibrium states with dif-

ferent order parameters: almost zero in Ref. (67) and large in the supercurrent-carrying state here,
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as seen from several experimental features (HH modes, σ2 divergence...). Clearly, these two states

are different. We also demonstrate this with our theoretical model, which distinguishes between

two different gapless regimes, II and III, based on the order parameter.

D.8 Gauge-invariant nonequilibrium SC theory

In this section, we briefly present our gauge-invariant density matrix approach used to illustrate

control of non-equilibrium SC dynamics via THz-light-induced super-currents. We start from the

microscopic spatial-dependent Bogoliubov–de Gennes mean-field model for s-wave superconduc-

tors (151)

H =
∑
σ

∫
d3xψ†σ(x) [ξ(p + eA(x, t))− µ− eφ(x, t)]ψσ(x)

−
∫

d3x
[
∆(x)ψ†↑(x)ψ†↓(x) + h.c.

]
. (D.9)

Here ψ†σ(x) and ψσ(x) are the Fermionic creation and annihilation field operators with spin index

σ, p = −i∇x is the momentum operator, ξ(p) defines the single-particle energy dispersion, and µ

is the chemical potential. To describe the coupling to the electromagnetic field we use the minimal

(Peierls) substitution ξ(p) → ξ(p + eA(x, t)) where A(x, t) denotes the vector potential while

φ(x, t) is the scalar potential. The SC pairing is described by second part of Hamiltonian (D.9)

where

∆(x) = |∆|eiζ(x) = VSC〈ψ↓(x)ψ↑(x)〉 , (D.10)

is the complex spatially- and time-dependent SC order parameter with SC pairing interaction

strength VSC and SC gap phase ζ(x).

A gauge invariant SC theory requires gauge-invariance of the Hamiltonian (D.9) under the gauge

transformation (152)

Ψ(x) → eiσ3Λ(x)/2Ψ(x) , (D.11)
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where Ψ(x) = (ψ↑(x), ψ†↓(x))T is the field operator in Nambu space and σ3 =

1 0

0 −1

. This is

fulfilled when vector potential, scalar potential, and SC gap phase transform via

A(x) → A(x) +
1

2e
∇Λ(x) , φ(x) → φ(x)− 1

2e

∂

∂t
Λ(x) , ζ(x) → ζ(x) + Λ(x) . (D.12)

To obtain a gauge-invariant description of the non-equilibrium SC dynamics, we introduce center-

of-mass and relative coordinates R = (x + x′)/2 and r = x − x′. We then transform system’s

density matrix ρ(x,x′) = 〈Ψ(x)†Ψ(x′)〉 using the transformation (151; 153)

ρ̃(r,R) = exp

[
−ie

∫ 1
2

0
dλA(R + λ r, t) · rσ3

]
ρ(r,R)exp

[
−ie

∫ 0

− 1
2

dλA(R + λ r, t) · rσ3

]
(D.13)

where ρ(r,R) = 〈Ψ†(R + r
2)Ψ(R− r

2))〉. By applying the gauge transformation (D.11), the density

matrix ρ̃(r,R) transforms as (151)

ρ̃(r,R) → exp [iσ3Λ(R)/2] ρ̃(r,R)exp [−iσ3Λ(R)/2] . (D.14)

The dynamics of the transformed density matrix is then derived by using the Heisenberg equa-

tion of motion technique. The details of the derivation will be published elsewhere. To simplify

the problem, we choose the gauge, Λ(x) = −ζ(x), where the phase ζ(x) of the SC gap is elim-

inated and assume homogenous excitation conditions by neglecting the R-dependence of vector

and scalar potential. After transforming to momentum space, we obtain the gauge-invariant Bloch

equations (151; 153)

i
∂

∂t
ρ̃1,1(k) = −i eE(t) · ∇kρ̃1,1(k) + |∆| [ρ̃1,2(k− pS)− ρ̃2,1(k− pS)] ,

i
∂

∂t
ρ̃2,2(k) = i eE(t) · ∇kρ̃2,2(k)− |∆| [ρ̃1,2(k + pS)− ρ̃2,1(k + pS)] ,

i
∂

∂t
ρ̃1,2(k) = [ξ(k− pS) + ξ(−k− pS)− 2µeff ]ρ̃1,2(k)− |∆| [ρ̃2,2(k + pS)− ρ̃1,1(k− pS)] . (D.15)

which describe quantum transport in BCS superconductors. Here we introduced the homogeneous

gauge-invariant superfluid momentum and effective chemical potential

ps = −eA , µeff = µ+ e φ . (D.16)
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The superfluid momentum yields center-of-mass acceleration of Cooper pairs, ∂
∂tps = eE(t), such

that the inversion symmetry of electron (ρ̃1,1) and hole densities (ρ̃2,2) is broken. In the equations

of motion (D.15) it leads to quantum transport terms like i eE(t) ·∇kρ̃1,1(k + pS) which are absent

in the pseudo-spin model description as discussed below (154; 37). The time-dependent effective

chemical potential describes the dynamics of the condensate. In our calculation it is determined

by the conservation of the total charge N =
∑

k[ρ̃1,1(k) + 1 − ρ̃2,2(k)] (151) which is generally

not fulfilled in the mean-field description of superconductivity. This way the condensate responds

simultaneously to the QP dynamics.

In our calculations we use the square lattice nearest-neighbor tight-binding dispersion ξ(k) =

−2 J [cos(kx a) + cos(ky a)] with nearest-neighbor hopping strength J > 0 and lattice constant a.

We assume half-filling case by setting µ = 0. The kinetic term in the equations of motion (D.15)

is expanded up to p2
s order, ξ(k− pS) + ξ(k + pS) = 2 ξ(k) + 2 J a cos(kx a)p2

s +O(p4
s), where the

electric field E = E ex is chosen to be polarized along the x-direction. As initial state we use a

BCS ground state with SC gap 2∆ = 5.2 meV. We then excite the superconductor with an electric

field

E(t) = E0 ex (cos(ωL t) + κ)/(1 + κ) exp[−t2/(2σ2
t )] (D.17)

where E0 is the strength, ωL denotes the center frequency, and σt defines the duration of the applied

THz light field. The temporal asymmetry of the pulse is controlled by the parameter κ which thus

determines the strength of ps after the pulse.

Quasi-particle excitation energy

As we illustrate in Fig. 1d in the main text, the presence of a superconducting velocity vS

results in a tilt of the quasi-particle energy spectrum. More precisely, in the presence of the

supercurrent the energy spectra of quasi-electrons (+) and quasi-holes (-) are approximately given

by Ek,± = ±k · vS/2 +
√

(ξ(k)− µ)2 + |∆|2. One can see that the QP excitation energy and the

SC order parameter differ in the presence of superfluid velocity and acceleration of the macroscopic

electronic state. Depending on the size of vS, some of the electrons near the Fermi surface of spin-
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up and -down states cannot form Cooper pairs anymore. In general, one can distinguish between

two cases: (I) For |k · vS/2| <
√

(ξ(k)− µ)2 + |∆|2, both quasi-electron and –hole energies remain

positive-valued within the entire momentum range, so that all electrons near the Fermi surface

can still form Cooper pairs. As a result, the rigid Cooper pair condensate moves as a whole with

velocity vS. (II) For |k · vS/2| >
√

(ξ(k)− µ)2 + |∆|2 , the quasi-electron or quasi-hole excitation

energy can become zero for some k-values, i. e. the QP energy gap closes at specific wavevectors

and the macroscopic state becomes partially gapped with finite order parameter. Then the Cooper

pairs are broken for such wavevector values, while the Cooper pairs with Ek,± > 0 remain unbroken

(condensed). In this situation, the k-space near the Fermi surface can be divided into two regions,

analogous to a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state: pairing and depairing regions. The

latter is characterized by a gapless quasiparticle spectrum, i.e., it costs zero energy to excite QPs for

such wavevectors. In Fig. 4d and g in the main text we plot the dynamics and fluence dependence of

the minimum of Ek,± within the complete k-space, which allows us to monitor the non-equilibrium

transition from a gapped SC state to a gapless state with macroscopic coherence similar to the

FFLO state. If the minimum of Ek,± after THz light-induced SC gap quench is positive-valued,

the system is in a quenched but still gapped SC state, while the system reaches a gapless SC state

as soon as Ek,± becomes zero for some k-values, where QPs can be now excited due to light-wave

acceleration.

High-harmonics generation vs. Higgs mode

Our theory predicts two effects: First, the amplitude oscillations of the SC order parameter

observable during the pulse in Fig. 1e correspond to high harmonics generation. The symmetric

pulse produces only even harmonics, while an asymmetric pulse yields both even and forbidden odd

harmonics, due to the THz-light induced inversion symmetry breaking via overall acceleration of the

macroscopic state along a preferred direction. Second, in contrast, the oscillations of the SC order

parameter observable after the pulse are a result of the photo-excited Higgs mode. Both symmetric

and asymmetric pulses excite the Higgs mode, which depends on the magnitude of the light-induced
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SC order parameter quench. Qualitatively, the frequency of the Higgs mode is ωHiggs = 2∆∞/h̄

where ∆∞ is the quenched order parameter amplitude value, which |∆(t)| asymptotically reaches

after the THz-light induced quench. In general, the asymmetric pulse produces a stronger quench

of the SC order parameter (Fig. 4f) at a given electric field amplitude, which results in different

Higgs frequencies for symmetric and asymmetric pulses. The stronger quench of the SC gap with an

asymmetric pulse is the result of the light-induced nonlinear supercurrent but for different reasons

than the forbidden modes. As discussed above, in the presence of a superconducting velocity vS,

the energies of quasi-electrons and quasi-holes can become zero for some k-values. As a result, the

excitation spectrum is gapless at certain points and the Cooper pairs are broken for such k-points,

which yields a reduction of the SC coherence and thus the SC order parameter as compared to the

excitation with a symmetric pump pulse. This enhances the Higgs oscillations after the pulse. In

general, the Higgs mode is not so easily detectable in experiments because it cannot be probed by

linear-response-type measurements. In addition, the observation of the Higgs mode in time-resolved

experiments requires very clean samples with large enough dephasing times, which complicates the

detection.

D.9 Interference between quantum transport and pseudo-spin precession

The emergence of forbidden harmonics reflects the sensitivity of high harmonic generation to

dynamical symmetry breaking, which is realized in our experiment via light-wave acceleration of

the Cooper-pair condensate. This introduces a preferred direction that changes the symmetry of

the macroscopic state. To systematically describe light-wave driven dynamical symmetry breaking

and its interplay with the conventional Anderson pseudo-spin precession, we have developed the

microscopic gauge-invariant density matrix theory without perturbative susceptibility expansions,

discussed above. Our theory combines nonlinear Anderson pseudo–spin dynamics with nonlinear

light-wave acceleration of the Cooper-pair condensate. The latter is absent in the pseudo-spin

precession model which is the standard theory for understanding the quantum dynamics of a SC

condensate coupled to an ac electric field. Both nonlinear quantum transport as well as nonlin-
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ear pseudo-spin precession contribute to the generation of the high harmonics in the equations of

motion presented in Eq. (D.15): Nonlinear quantum transport originates from driving terms of

the form E(t) · ∇kρ̃(k) while Anderson pseudo–spin dynamics is described by terms of the form

|∆(t)|ρ̃(k± pS), modified by the lightwave acceleration here, in addition to the usual light–matter

coupling contribution ∝ p2
S. There is clearly an interplay between quantum transport and An-

derson pseudo-spin precession, which is described consistently by our theory that maintains gauge

invariance and avoids uncontrolled perturbative expansions of the displaced populations of a mov-

ing condensate. The quantum transport terms induce a center-of-mass momentum of the Cooper

pairs, with inversion-symmetry breaking due to the finite pS that introduces a preferred direction.

The pseudo-spin precession terms lead to pseudo-spin oscillations modified by the quantum trans-

port and center-of-mass acceleration that changes the phase of the macroscopic wavefunction. In

general, the nonlinear quantum transport contributions alone lead to high harmonic generation, as

long as an accelerated Cooper-pair condensate is present with a finite SC order parameter. These

nonlinearities have not been adequately addressed so far and are absent in the normal state. To

determine the exact interplay, we note that Anderson pseudo-spin precession requires a sufficiently

non-parabolic bandstructure, and is more sensitive to the bandstructure of individual materials as

compared to the lightwave acceleration. Quantum transport and pseudo-spin precession nonlinear

contributions thus non-trivially interfere during the photo-excitation process in a way that depends

on the bandstructure and both contribute to the generation of the high harmonics.

To understand the origin of high-harmonic generation in more detail, we have expanded the

density matrix in orders of the pump laser center frequency, ρ̃(k) =
∑

N ρ̃
(NωL)(k), where ρ̃(NωL)(k)

is the N -th order response of the density matrix. For a symmetric one-color pump pulse, we find

that ρ̃
((2N+1)ωL)
2,1 (k) = 0 while ρ̃

((2N+1)ωL)
1,1 (k) = ρ̃

((2N+1)ωL)
2,2 (k) such that the transient THz response

or SC order parameter ∆ =
∑

N ∆(NωL) = VSC
∑

N

∑
k ρ̃

(NωL)
2,1 (k) shows only even harmonics. This

is similar to all previous theoretical descriptions of the coherent dynamics. The situation changes,

however, when the system is excited with an asymmetric pump pulse, due to ligh-wave acceleration

of Cooper pairs. Such a pulse induces a finite center-of-mass momentum of the Cooper pairs,
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which, importantly, persists after the pulse. As a result, equilibrium inversion symmetry of the

system is broken, such that forbidden high harmonics should be expected to emerge. This can

be understood by viewing the asymmetric pulse as a two-color pulse, where one pulse oscillates

at the laser’s center frequency ωL while the second one has frequency peak close to ω = 0. The

dynamical interference of these two frequency components, clearly seen in the experimental pulse,

in the quantum transport terms as well as in the pseudo-spin precession contributions leads to the

generation of equilibrium-forbidden odd harmonics, in addition to the even harmonics discussed

before, since now both ρ̃
((2N+1)ωL)
2,1 (k) 6= 0 and ρ̃

((2N+1)ωL)
1,1 (k) 6= ρ̃

((2N+1)ωL)
2,2 (k). This is somewhat

analogous to two-color pulse experiments on inversion-symmetric samples, where the interference of

the two frequencies breaks the equilibrium inversion symmetry and even and odd harmonics become

observable. The ratios between even and odd harmonics is controllable in our model by adjusting

the asymmetry of the applied pump pulse, while the ratios between different even harmonics also

depend on the details of the bandstructure. Our numerical calculation in the time domain puts

the above analysis on a quantitative basis and identifies the importance of the new nonlinearities

introduced by lightwave acceleration of a condensate along a preferred direction for strong linearly

polarized THz electric field.
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Figure D.6 (a)-(b) Dynamics of total current and THz pump-probe response. The cor-

responding spectra are plotted in (c)-(d) ((e)-(f)) in linear (semi-logarithmic)

scale.
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Figure D.7 Asymmetry of the experimental and theoretical pulses. The dynamics of (a)

0.5THz and (b) 1.0THz experimental (blue line) and theoretical (red line)

pump pulses are shown. The corresponding spectra are plotted in (c) and (d).

The asymmetry of 0.5THz and 1.0THz pulses are 3% and 2% (see text for

details).
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